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\S 1. Introduction and results

The purpose of this paper is to prove that the results of Strang [10]
for $2\cross 2$ systems are also valid for hermitian $3\cross 3$ systems with characteristic
boundary including the linearized shallow water equations. This has been
conjectured by Majda and Osher [5].

We consider the mixed problems for hermitian systems of first order
in the quarter space $t\geqq 0$ , $x\geqq 0$ , $y=(y_{1}, \cdots, y_{n})\in R^{n}$ :

$\frac{\partial u}{\partial t}+A\frac{\partial u}{\partial x}+\sum_{j=1}^{n}A_{j}\frac{\partial u}{\partial y_{j}}=f$ in $t>0$ , $x>0$, $y\in R^{n}$ ,
(1. 1)

$u(0, x, y)=u_{0}(x, y)$ in $x>0$ , $y\in R^{n}$ ,
$Bu(t, 0, y)=0$ in $t>0$ , $y\in R^{n}$ .

Here we assume $A$ and $A_{j}$ to be constant, hermitian $3\cross 3$ matrices, the
boundary $x=0$ to be characteristic; that is, $\det A=0$ . Furthermore, we
assume $B$ to be aconstant $l\cross 3$ matrix whose rank $l$ is equal to the num-
ber of positive eigenvalues of $A$ . In the treatment of characteristic mixed
problems it is natural to assume that the problem (1. 1) is reflexive, that is,
$kerA\subset kerB$ (see Kubota and Ohkubo [4] and Rauch [9]).

Our problem is whether there exists asolution $u$ of (1. 1) satisfying the
following energy inequality: There is aconstant $C_{T}>0$ for each $T>0$ such
that

(1. 2) $||u(t)|| \leqq C_{T}(||u_{0}||+\int_{0}^{t}||f(s)||ds)$

for any $t$ with $0\leqq t\leqq T_{1}$ Here $||\cdot||$ stands for the usual $L^{2}$-norm in the
half space $x>0$ , $y\in R^{n}$ .

Asufficient condition for the existence of asolution of (1. 1) satisfying
(1.2) has been already established by Friedrichs [2] and Lax and Phillips
[7]. This condition is called “maximally non-positive” ;that is, after anon-
singular transformation $v=Tu$ of unknowns such that $A’=T^{-1}$AT and
$A_{j}’=T^{-1}A_{j}T$ are hermitian, it holds that


