Characteristic mixed problems for hermitian systems in three unknowns

By Rentaro Agemi

(Received February 20, 1978)

§ 1. Introduction and results

The purpose of this paper is to prove that the results of Strang [10] for 2×2 systems are also valid for hermitian 3×3 systems with characteristic boundary including the linearized shallow water equations. This has been conjectured by Majda and Osher [5].

We consider the mixed problems for hermitian systems of first order in the quarter space $t \geqq 0, x \geqq 0, y=\left(y_{1}, \cdots, y_{n}\right) \in \boldsymbol{R}^{n}$:

$$
\begin{array}{ll}
\frac{\partial u}{\partial t}+A \frac{\partial u}{\partial x}+\sum_{j=1}^{n} A_{j} \frac{\partial u}{\partial y_{j}}=f & \text { in } t>0, x>0, y \in \boldsymbol{R}^{n} \\
u(0, x, y)=u_{0}(x, y) & \text { in } x>0, y \in \boldsymbol{R}^{n} \tag{1.1}\\
B u(t, 0, y)=0 & \text { in } t>0, y \in \boldsymbol{R}^{n}
\end{array}
$$

Here we assume A and A_{j} to be constant, hermitian 3×3 matrices, the boundary $x=0$ to be characteristic; that is, $\operatorname{det} A=0$. Furthermore, we assume B to be a constant $l \times 3$ matrix whose rank l is equal to the number of positive eigenvalues of A. In the treatment of characteristic mixed problems it is natural to assume that the problem (1.1) is reflexive, that is, ker $A \subset$ ker B (see Kubota and Ohkubo [4] and Rauch [9]).

Our problem is whether there exists a solution u of (1.1) satisfying the following energy inequality: There is a constant $C_{T}>0$ for each $T>0$ such that

$$
\begin{equation*}
\|u(t)\| \leqq C_{T}\left(\left\|u_{0}\right\|+\int_{0}^{t}\|f(s)\| d s\right) \tag{1.2}
\end{equation*}
$$

for any t with $0 \leqq t \leqq T$. Here $\|\cdot\|$ stands for the usual L^{2}-norm in the half space $x>0, y \in \boldsymbol{R}^{n}$.

A sufficient condition for the existence of a solution of (1.1) satisfying (1.2) has been already established by Friedrichs [2] and Lax and Phillips [7]. This condition is called "maximally non-positive"; that is, after a nonsingular transformation $v=T u$ of unknowns such that $A^{\prime}=T^{-1} A T$ and $A_{j}^{\prime}=T^{-1} A_{j} T$ are hermitian, it holds that

