A commutativity theorem for left s-unital rings

By Yasuyuki HIRANO

(Received April 2, 1978)

Throughout R will represent a ring, and N the set of all nilpotents of R. Following [5], R is called a left s-unital ring if for each $x \in R$ there exists an element e such that ex=x. As was shown in [5, Theorem 1], if F is a finite subset of a left s-unital ring R then there exists $e \in R$ such that ex=x for all $x \in F$.

In this note, we consider the following conditions:

1) For each $x \in R$ there exists a positive integer n such that $x - x^{n+1} \in N$.

1') For each $x \in R$ there exist positive integers m and n such that $x^m - x^{m+n} \in N$.

1") For each $x \in R$ there exist a positive integer *n* and an element x' in the subring [x] generated by x such that $x^n = x^{n+1}x'$.

1''') For each $x \in R$ there exists an element $x' \in [x]$ such that $x - x^2 x' \in N$.

2) $x-y \in N$ and $y-z \in N$ imply that $x^2=z^2$ or xy=yx.

 2_*) $x-y \in N$ implies that $x^2 = y^2$ or both x and y are contained in the centralizer $V_R(N)$ of N in R.

2*) $x-y \in N$ implies that $x^2=y^2$ or xy=yx.

In general, 2_*) \Rightarrow 2) \Rightarrow 2*), and 1) \Rightarrow 1') \Rightarrow 1'') \Leftarrow 1'''). Moreover, 1'') \Rightarrow 1'''). In fact, for any $x' \in [x]$ we have $(x - x^2x')^n = (x^n - x^{n+1}x') - (x^n - x^{n+1}x') x''$ with some $x'' \in [x]$.

Recently, in [1, Theorem 2], we proved that if a left s-unital ring R satisfies 1) and 2) then R is commutative. More recently, in [3, Theorem 2], D. L. Outcalt and A. Yaqub have proved that if a ring R with a left identity satisfies 1") and 2_{*}) then R is commutative. It is the purpose of this note to present the following theorem which includes [1, Theorem 2] as well as [3, Theorem 2].

THEOREM. Let R be a left s-unital ring satisfying 2). Then each of 1), 1'), 1''), 1''') implies others and that R is commutative.

The next easy lemma is included in [1, Lemma 1].

LEMMA 1. Assume that R satisfies 2^*).

(1) $x^2 \in V_R(N)$ for each $x \in R$, especially every idempotent is central.