Remarks on the spaces of type H+AP

By Hiroshi Yamaguchi

(Received October 6, 1978; Revised May 21, 1979)

§ 1. Introduction.

For a LCA group G, AP(G) and M(G) denote the space of all almost periodic functions and the space of all bounded regular measures on G respectively.

Let R be the reals. In [4], S. Power proved that the sum of the Hardy space and the space of all almost periodic functions on $R(H^{\infty}(R) + AP(R))$ is a closed subspace of $L^{\infty}(R)$ but not an algebra.

For a LCA group G, in [6], W. Rudin proved that $H+C_u(G)$ is a closed subspace of $L^{\infty}(G)$ for a translation-invariant weak*-closed subspace H of $L^{\infty}(G)$ and the space of all bounded uniformly continuous functions $C_u(G)$.

In this paper, we shall prove that H+AP(G) is a closed subspace of $L^{\infty}(G)$ for every translation-invariant weak*-closed subspace H of $L^{\infty}(G)$. Moreover, we shall investigate whether a space of type H+AP(G) becomes an algebra.

DEFINITION 1. For any subset Φ of $L^{\infty}(G)$, the spectrum of Φ is defined as the set $\sigma(\Phi)$ of all $\gamma \in \hat{G}$ that belong to the smallest translation-invariant weak*-closed subspace of $L^{\infty}(G)$ containing Φ .

Easily, we have the following:

$$\sigma({\bf \Phi})=\cap\left\{\hat{f}^{-1}(0)\ ;\ f{\in}\,L^{1}(G),\ f_{*}{\bf \Phi}=0
ight\}.$$

§ 2. Main Theorem

Let \bar{G} denote the Bohr compactification of G. Then we can identify AP(G) with $C(\bar{G})$. Let $d\bar{x}$ denote the Haar measure on \bar{G} . For $f, g \in AP(G)$, we define f*g, $||f||_1$ and \hat{f} with respect to $d\bar{x}$. The symbol $B(L^{\infty}(G))$ denotes the Banach algebra of bounded linear operators on $L^{\infty}(G)$.

LEMMA. There exists a linear map

$$f \vdash \longrightarrow \lambda_f; AP(G) \vdash \longrightarrow B(L^{\infty}(G))$$

satisfying the following conditions for f, $g \in AP(G)$ and $\phi \in L^{\infty}(G)$: