On a class of pseudo-differential operators and hypoellipticity

By Junichi ARAMAKI

(Received January 9, 1979; Revised April 11, 1979)

0. Introduction

In this paper we shall consider a class of pseudo-differential operators P whose characteristic set Σ is the union of closed conic submanifolds Σ_1 , $\Sigma_2, \dots, \Sigma_n$. Under some transversarity conditions and involutiveness, we shall give the necessary and sufficient condition for hypoellipticity of P.

When n=1, our class coincides with $L^{m,M}_{k}(X, \Sigma)$ introduced by Helffer [5] and moreover if k=2, it coincides with $L^{m,M}_{c}(X, \Sigma)$ introduced by Sjöstrand [8] (see also [4]). In the case where n=1, M=2, k=2 and Σ is involutive, Boutet de Monvel [1] gives a necessary and sufficient condition for the existence of a parametrix of P in $OPS^{-m,-M}$ (more general class than ours OPL), which is also equivalent to the hypoellipticity of P with loss of 1derivative. For general M and k, [5] constructs a left parametrix and then proves hypoellipticity with loss of M/k-derivatives, which is a generalization of [1].

In § 1, using the technique developed by [5], we introduce an invariance of P (Theorem 1.3) and state a necessary and sufficient condition for the hypoellipticity of P (Theorem 1.5). In § 2 and § 3, we give their proofs. § 4 is devoted to the study of hypoellipticity for another class of pseudodifferential operators on \mathbb{R}^{N} .

1. Notations, Definitions and Statements of the results

Let X be a paracompact C^{∞} manifold of dimension N and let $T^*(X)$ - $\{0\}$ be the cotangent bundle minus the zero section.

DEFINITION 1.1. Let $\Sigma_1, \Sigma_2, \dots, \Sigma_n$ be closed conic submanifolds of codimension p_1, p_2, \dots, p_n respectively in $T^*(X) - \{0\}$ and let $m \in \mathbb{R}$, $M_1, M_2,$ $\dots, M_n \in \mathbb{Z}^+$, $k_1, k_2, \dots, k_n \in \mathbb{Z}^+$ and $k_j \ge 2$, $j=1, 2, \dots, n$. Then we define $OPL^{m, \frac{M_1, M_2, \dots, M_n}{k_1, k_2, \dots, k_n}(X; \Sigma_1, \Sigma_2, \dots, \Sigma_n)$ to be the space of pseudo-differential operators P which, in every local coodinate system $U \subset X$, has a symbol of the form