Stability of G-unfoldings

By Shyūichi Izumiya

(Received December 26, 1978)

§ 0. Introduction

In [4], R. Thom has presented the problem to study the bifurcation of singularities of G-invariant functions. (Where G is a compact Lie group). In realtion to this problem, G. Wassermann has classified singularities with compact abelian symmetry and their universal G-unfoldings ([6]). But, from the view point of "Catastrophe theory" we must classify stable G-unfoldings instead of universal G-unfoldings.

In this paper, we will prove the equivalence of these notions of G-unfoldings. Once this is proved, the list of universal G-unfoldings in [6] can be exchanged for stable G-unfoldings.

The main result of this paper will be formulated in § 1. Preliminary facts about G-invariant functions and jet bundles are contained in § 2. Proof of the main result will be given in § 3.

All functions and actions of Lie group should be smooth.

§1. Formulation of the result

Let G be a compact Lie group which acts linearly on \mathbb{R}^n . We shall denote $C^{\infty}(\mathbb{R}^n)$ the set of all C^{∞} -functions over \mathbb{R}^n ; $C_0^{\infty}(\mathbb{R}^n)$ the set of all C^{∞} -function germs at 0. We shall set $\mathfrak{M}_0^{\infty}(\mathbb{R}^n) := \{f \in C_0^{\infty}(\mathbb{R}^n) | f(0) = 0\}$. Then $C_0^{\infty}(\mathbb{R}^n)$ is an \mathbb{R} -algebra in the usual way, and $\mathfrak{M}_0^{\infty}(\mathbb{R}^n)$ is its unique maximal ideal.

A function $f \in C^{\infty}(\mathbb{R}^n)$ will be said to be *G*-invariant if f(gx) = f(x)for any $x \in \mathbb{R}^n$ and $g \in G$. The set of *G*-invariant functions over \mathbb{R}^n will be denoted by $C^G(\mathbb{R}^n)$ and the set of all *G*-invariant function germs at 0 denoted by $C_0^G(\mathbb{R}^n)$; it is a subalgebra of $C_0^{\infty}(\mathbb{R}^n)$, and $\mathfrak{M}_0^G(\mathbb{R}^n) := C_0^G(\mathbb{R}^n) \cap \mathfrak{M}_0^{\infty}(\mathbb{R}^n)$ is its unique maximal ideal.

Let $f: (\mathbf{R}^n, a) \to (\mathbf{R}, c)$ and $h: (\mathbf{R}^n, a') \to (\mathbf{R}, c')$ be germs of G-invariant functions at a and a'(f(a)=c, f(a')=c'). We shall say f is G-right equivalent to h (and we shall write $f \sim_G h$) if there is a equivariant diffeomorphism germ $\phi: (\mathbf{R}^n, a) \to (\mathbf{R}^n, a')$ such that $f = h \circ \phi + (c - c')$.

DEFNITION 1.1. Let $f \in \mathfrak{M}_0^G(\mathbf{R}^n)$. We say f is strongly k-determined