On the first eigenvalue of the Laplacian acting on *p*-forms

By Satoshi Asada (Received June 25, 1979)

§ 1. Introduction.

Let M be a compact and oriented Riemannian manifold isometrically immersed in a complete and simply connected space form of constant sectional curvature K. Let $\lambda_i^p(M)$ denote the first non-zero eignvalue of the Laplacian acting on p-forms on M. In this note we will be concerned with the next problem:

Estimate $\lambda_1^p(M)$ from above in terms of the quantities determined by M (the volume Vol(M), the diameter d(M), etc.) and the immersion (the mean curvature vector field η , the second fundamental form S, etc.). Furthermore, give the equality condition.

For this problem, in the case K=0, Bleecker-Weiner ([1]) obtained an estimate of $\lambda_1^0(M)$. Masal'cev ([4]) also obtained the same result by a different method but under the additional assumption that M is a hypersurface. Masal'cev ([5]) gave an estimate of $\lambda_1^p(M)$ for $1 \le p \le \dim M - 1$, when M is a hypersurface. In the case $K \ne 0$, Masal'cev ([6]) obtained an estimate of $\lambda_1^0(M)$ for a hypersurface without the equality condition. Now we can compare the first eigenvalue $\lambda_1^p(M)$ with that of the standard m-sphere $S^m(1)$ of constant curvature 1. The purpose of the present note is to present the following

THEOREM. Let M be an $m(\geqslant 2)$ -dimensional compact and oriented Riemannian manifold without boundary.

(A) If M is isometrically immersed in the n-dimensional Euclidean space E^n , then for $0 \le p \le m$, we have

$$(1.\ 1) \hspace{1cm} \lambda_{\scriptscriptstyle \rm I}^{\scriptscriptstyle p}(M) \leqslant \frac{\lambda_{\scriptscriptstyle \rm I}^{\scriptscriptstyle p}(S^{\scriptscriptstyle m}(1))}{m\ Vol(M)} \int_{\scriptscriptstyle M} ||S||^2 dV_{\scriptscriptstyle M} \, .$$

Equality holds iff M is embedded as a geodesic sphere in some (m+1)-dimensional totally geodesic submanifold in E^n . Here ||S|| denotes the length of S and dV_M the volume form of M.

(B) If M is isometrically immersed in $S^n(1)$, then for $1 \le p \le m-1$, we have