Boundary behavior of Dirichlet solutions at regular boundary points

By Wataru OGAWA

(Received June 18, 1979)

Let G be a bounded domain in the complex plane. Let f be an extended real-valued continuous function on the boundary ∂G of G. If f is bounded, there exists the Dirichlet solution H_f^q ([2]) and if p_0 is a regular boundary point, then

$$\lim_{\boldsymbol{G} \ni \boldsymbol{z} \to \boldsymbol{p}_0} H_f^{\boldsymbol{G}}(\boldsymbol{z}) = f(\boldsymbol{p}_0) . \tag{1}$$

From M. Brelot's example ([1]) we can make an example which violates $\lim_{g \ni z \to p_0} H_f^q(z) = f(p_0)$ for an unbounded continuous resolutive f at a regular boundary point p_0 . Here we show that under a certain condition (1) holds for an unbounded continuous resolutive f at a regular boundary point p_0 . Set $f^+ = \max{f, 0}$ and $f^- = \max{-f, 0}$. Our result is the following.

THEOREM. Let G be a bounded domain in the complex plane and p_0 be a regular boundary point of G. Let f be an extended real-valued continuous and resolutive boundary function on ∂G .

and $u = H_f^{G}$, then $u_n \uparrow u$ $(n \to \infty)$. If $f(p_0) = +\infty$, $n = \lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} u(z) \le \lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} u(z)$. Letting $n \to \infty$, we obtain $\lim_{\substack{G \ni z \to p_0 \\ G \ni z \to p_0}} u(z) = +\infty = f(p_0)$. If $f(p_0)$ is finite, we denote by α the component of ∂G containing p_0 .