On Sasakian manifolds with vanishing contact Bochner curvature tensor

By Izumi HASEGAWA and Toshiyuki NAKANE (Received November 21, 1979; Revised January 23, 1980)

§ 1. Introduction.

Recently, S. I. Goldberg and M. Okumura [3] proved

THEOREM A. Let M be an n-dimensional compact conformally flat Riemannian manifold with constant scalar curvature R. If the length of the Ricci tensor is less than $R/\sqrt{n-1}$, $n \ge 3$, then M is a space of constant curvature.

For a Kaehlerian manifold, Y. Kubo [7] proved

Theorem B. Let M be a real n-dimensional Kaehlerian manifold with constant scalar curvature R whose Bochner curvature tensor vanishes. If the length of the Ricci tensor is not greater than $R/\sqrt{n-2}$, $n \ge 4$, then M is a space of constant holomorphic sectional curvature.

Note that the square of the length of the Ricci tensor is greater than or equal to R^2/n , so the Ricci tensor has been "pinched".

We have the following remarks [5] on Theorem B.

REMARK 1. The condition with respect to the length of the Ricci tensor can be replaced by

$$(*) R_{ab} R^{ab} \leqq \frac{R^2}{n-2} .$$

Remark 2. Moreover the condition (*) can be replaced by the best condition

$$R_{ab}R^{ab} < \frac{n^3 - 2n^2 + 32}{(n+2)^2(n-4)^2}R^2$$
 for $n > 4$.

Remark 3. In paticular, when M is of dimension 4, if the scalar curvature does not vanish, then M is of constant holomorphic sectional curvature.

The purpose of this paper is to obtain the theorems, analogous to the above theorems, for a Sasakian manifold with vanishing contact Bochner curvature tensor.

Theorem 1. Let M be a (2n+1)-dimensional Sasakian manifold with