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Some remarks on p-blocks of finite groups
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In this paper we are concerned with modular representations of finite
groups. Let G be a finite group and p a fixed rational prime. Let K be
a complete p-adic field of characteristic 0 and R the ring of p-local integers
in K with the principal maximal ideal (\pi) and the residue class field R=R/(\pi)

of characteristic p. We assume throughout the paper that fields K and R
are both splitting fields for all subgroups of the given group G. We men-
tion here [2] and [3] as general references for the modular representation
theory of finite groups.

1. In this section we shall give some necessary and sufficient condition
for G to be p-nilpotent. If B is a p-block of G, then let Irr(B) denote
the set of irreducible K-characters of G in B. For a class function \theta of G
we put \theta_{B}=\sum_{\chi\in Irr(B)}(\theta, \chi)\chi . Let B_{0}(G) denote the principal p-block of G.

We prove the following.
THEOREM 1. Let H be a subgroup of G which contains a Sylow

p subgroup P of G. If 1_{HB_{0}(G)}^{G}(x)=1 for any p-element x\neq 1 in G, then H
controls the fusion of elements of P.

To prove the theorem we use the following elementary lemma which
follows from Brauer’s Second Main Theorem.

Lemma. Let \theta be a class function of G, x a p-element of G and B
a p-block of G. Then \theta_{B}(x)=\sum\theta_{1c_{G^{(x)b}}}(x) where b ranges over the set of
p-blocks of C_{G}(x) with b^{G}=B .

PROOF of THEOREM 1. Let x\neq 1 be an element of P, C=C_{G}(x) , B=
B_{0}(G) and b=B_{0}(C) . By Mackey decomposition we have 1_{H1C}^{G}= \sum(1_{H^{y}\cap C})^{C}

where y ranges over a complete set of representatives of (H, C) -double cosets
in G. Thus the above lemma and the result of Brauer (Theorem 65. 4 [2])
show that 1_{HB}^{G}(x)= \sum(1_{H^{y}\cap C})^{c_{b}}(x) . If x\in H^{y}\cap C, then (1_{H^{y}\cap C})_{b}^{C}(x)=(1_{H^{1}\cap C}/)_{b}^{C}

(1) . and if x\not\in H^{y}\cap C, then (1_{H^{y}\cap C})_{b}^{C}(x)=0 by (6. 3) IV in [3]. As 1_{HB}^{G}(x)=1

by our assumption, x\in H^{y}\cap C if and only if y\in HC. Therefore if x^{y}\in H

for some element y, then there exists an element h in H such that x^{y}=x^{h}

and therefore the theorem is proved.
As an easy corollary of Theorem 1 we have the following.


