On the construction of *p*-adic *L*-functions

By Hideo IMAI

(Received August 14, 1980; Revised September 29, 1980)

Let Q be the rational number field, \overline{Q} the algebraic closure of Q, C the complex number field, p a prime number, Q_p the p-adic rational number field, Z_p the integer ring of Q_p , C_p the completion of the algebraic closure of Q_p and let \mathfrak{m} be the maximal ideal of the integer ring of C_p . We fix an imbedding of \overline{Q} into C and also fix an imbedding of \overline{Q} into C_p . Let $L_i(z) = L_i(z_1, \dots, z_r) = \sum_{1 \leq j \leq r} a_{ij} z_j$ be linear forms of r variables, where i ranges from 1 to n, r and n are natural numbers. We suppose that the coefficients a_{ij} are algebraic numbers and satisfy the following conditions: a_{ij} are real positive when considered as complex numbers, and $a_{ij} \in \mathfrak{m}$ when considered as p-adic numbers. Let $L_j^*(t) = L_j^*(t_1, \dots, t_n) = \sum_{1 \leq i \leq n} a_{ij} t_i$ be linear forms with above coefficients a_{ij} , where j ranges from 1 to r.

In the following, let us agree that the suffix i ranges from 1 to n and the suffix j ranges from 1 to r. We also agree that an algebraic number may be considered both as a complex number and as a p-adic number by the above fixed imbeddings.

Let $\chi_j: (\mathbf{Z}/d_j\mathbf{Z})^{\times} \to \bar{\mathbf{Q}}^{\times}$ be Dirichlet characters defined modulo d_j , which may be not necessarily primitive (here R^{\times} denotes the multiplicative group of invertible elements of a ring R and \mathbf{Z} denotes the ring of rational integers). Let $\xi_j \in \bar{\mathbf{Q}}^{\times}$ be such that $\xi_j^{d_j} \equiv 1 \pmod{\mathfrak{m}}$ and $|\xi_j| \leq 1$ where $|\xi_j|$ is the absolute value of ξ_j considered as a complex number. Let x_j be real algebraic number such that $0 \leq x_j < 1$ and $L_i(x) \equiv 1 \pmod{\mathfrak{m}}$ for $i=1, \dots, n$, where we have put $x = (x_1, \dots, x_r)$.

Now we define a function $Z(s) = Z(s_1, \dots, s_n)$ of *n* complex variables $s = (s_1, \dots, s_n)$ by

$$Z(s) = \sum_{m_1, \cdots, m_r=0}^{\infty} \frac{\chi_1(m_1) \cdots \chi_r(m_r) \,\xi_1^{m_1} \cdots \xi_r^{m_r}}{L_1(x+m)^{s_1} \cdots L_n(x+m)^{s_n}}$$

where $x + m = (x_1 + m_1, \dots, x_r + m_r)$.

It is easy to see that this series is absolutely convergent when the real parts of s_1, \dots, s_n are sufficiently large to give there a complex analytic function.

Next we define a mermorphic (i. e., meromorphic in each variable) function $G(t) = G(t_1, \dots, t_n)$ of *n* complex variables $t = (t_1, \dots, t_n)$ by