Reduction modulo \mathfrak{P} of Shimura curves

By Yasuo Morita

(Received May 21, 1980)

0-1. Let F be a totally real algebraic number field of finite degree g, and let B be a division quaternion algebra over F such that $B \bigotimes_Q R$ is isomorphic to the product of $M_2(\mathbf{R})$ and g-1 copies of the division quaternion algebra \mathbf{H} over \mathbf{R} . Let G be the algebraic F-group satisfying $G_F = B^{\times}$, let G_A be the adelization of G, and let G_{A+} be the subgroup of G_A consisting of all elements whose projections to $M_2(\mathbf{R})$ have positive determinants. Let $G_{\infty+}$ and G_0 be the archimedean part and the finite part of G_{A+} , let $G_{Q+} = G_{A+} \cap G_F$, and let \mathcal{Z} be the family consisting of all subgroups S of G_{A+} such that S has the form $S = G_{\infty+} \cdot S_0$ with an open compact subgroup S_0 of G_0 .

For each $S \in \mathbb{Z}$, let $\Gamma_S = S \cap G_{Q_+}$, and we regard Γ_S as a subgroup of $GL(2, \mathbb{R})$. Then Γ_S acts on the complex upper half plane \mathfrak{F} in the usual way, and $\Gamma_S \setminus \mathfrak{F}$ is a complete non-singular curve. Let ν be the reduced norm of B, and let k_S be the abelian extension of F corresponding to the subgroup $\nu(S) \cdot F^{\times}$ of F_A^{\times} by class field theory. Then Shimura constructed an algebraic curve V_S defined over k_S and a holomorphic map φ_S of \mathfrak{F} onto V_S inducing $\Gamma_S \setminus \mathfrak{F} \cong V_S$, satisfying certain algebraic and arithmetic conditions (cf. 1-1).

Let p be a prime number, and let \mathfrak{P} be an extension of p to a place of $\overline{\mathbf{Q}}$. Then we shall show that V_s has good reduction at \mathfrak{P} if (i) \mathfrak{P} does not divide the discriminant D(B/F) of B and (ii) the "level" of S is prime to p. (For the exact statement, see Main Theorem 1 in 1-2.) Furthermore, as was conjectured in Shimura [24], 2.9, we shall construct a system of curves over finite fields satisfying several conditions (see Main Theorem 3).

0-2. The exact statements of our main results are in §1. The proof starts in §2 and ends in §3.

In 1-1, we quote the result of Shimura [24] in our case. In 1-2, the main results are stated. In 1-3, a summary of the proof of Shimura's result is given. In 2-1, we quote from Mumford [14] the existence of the fine moduli scheme for polarized abelian schemes with level structures. In 2-2 and 2-3, we construct moduli spaces for families of PEL-sturctures by