Double integral theorem of Haar measures

By Hidegoro NAKANO* (Received July 10, 1980)

On a group G we consider only those uniformities U for which the right transformation group R_G is equi-continuous, i. e., for any $U \in U$ there is $V \in U$ such that $xVy \subset xyU$ for every x, $y \in G$. A set $A \subset G$ is said to be totally bounded for U if for any $U \in U$ we can find a finite system $x_{\nu} \in G$ ($\nu = 1, 2, \dots, n$) for which we have $A \subset \bigcup_{\nu=1}^{n} x_{\nu}U$. The linear lattice Φ of all uniformly continuous functions φ on G for which $\{x : \varphi(x) \neq 0\}$ are totally bounded for U is called the trunk of U. A positive linear functional μ on Φ is called a measure on Φ and its value is denoted by $\int \varphi(x) \mu(dx)$ for $\varphi \in \Phi$.

For a transformation T on G, if both T and T^{-1} are uniformly continuous for U, then for any $\varphi \in \Phi$, setting $\psi(x) = \varphi(xT)$ for $x \in G$, we obtain $\psi \in \Phi$. A measure μ on Φ is called a *Haar measure* of G for U if $\mu \neq 0$ and μ is invariant by R_G , i. e.,

$$\int\! \varphi(xy)\,\mu(dx) = \!\int\! \varphi(x)\,\mu(dx) \qquad \text{for} \quad \varphi\!\in\! \varPhi \quad \text{and} \quad y\!\in\! G \,.$$

A uniformity U on G is said to be locally totally bounded if there is $U \in U$ such that xU is totally bounded for every $x \in G$. According to the Theorem of Existence in [3], if U is locally totally bounded, then there is a Haar measure of G for U. If every left transformation $L_x(X \in G)$ is uniformly continuous for U in addition, then we can apply the Theorem of Uniqueness in [3], and we have that the Haar measures are uniquely determined except for constant multiplication, i. e., for any two Haar measures μ and ρ there is a positive number α such that

$$\int \! \varphi(x) \, \mu(dx) = lpha \! \int \! \varphi(x) \,
ho(dx) \qquad ext{for every} \quad \varphi \! \in \! arPhi \; .$$

For a topological group G we defined the proper uniformity on G in [6]. For the proper uniformity the right transformation group R_G is equicontinuous and every left transformation $L_x(x \in G)$ is uniformly continuous. Therefore for a locally compact topological group G there exists a Haar

^{*} This paper was completed by the auther about 1971.