Solvability of some groups

By Masahiko Мічамото

(Received May 1, 1980)

Introduction. K. Nomura posed the following problem: Let G be a finite group that has a large inner automorphism consistion. Then, is G a solvable group? Especially, we call a finite group G to be an AI-group if G satisfies the following: $N_G(A)/C_G(A)$ is isomorphic to the full automorphism of A for every Abelian subgroup A of G.

The purpose in the paper is to show the following theorem :

THEOREM A. Let G be a finite AI-group, then G is solvable.

To prove the theorem, we introduce the weaken condition. A finite group G is called an A_3I -group if G satisfies the following condition: For every Abelian 3'-subgroup A and a 3-subgroup B of $C_G(A)$, $C_G(B) \cap N_G(A)/C_G(B) \cap C_G(A) \ge O^3(\operatorname{Aut}(A))$. We will say that $C_G(B)$ covers $O^3(\operatorname{Aut}(A))$ if the condition holds.

Using the above notion, we will change the form of the theorem.

THEOREM B. The following hold:

a) All AI-groups are A_3I -groups.

b) Every $A_{s}I$ -group is solvable.

Clearly, Theorem A is an immediate consequence of Theorem B. Most of our notation is standard and taken from [1]. All groups considered in this paper will be finite. Let G be a group. Then F(G) denotes the Fitting subgroup of G.

2. Preliminary lemmas. In this section, we will search the properties of $A_{s}I$ -groups.

LEMMA 2.1. Let G be a finite $A_{3}I$ -group and B be a 3-subgroup of G. Then the following hold;

a) i(G)=1, the conjugate class of involutions of G is one.

b) Z(P) is of order p for a Sylow p-subgroup P of G and every prime divisor p of the order of G, $(p \neq 3)$.

- c) $C_G(B)$ is an A_3I -group.
- d) $G/O_{3}(G)$ is an $A_{3}I$ -group.
- e) $O^{3}(G)$ is an $A_{3}I$ -group.

PROOF. By the definition of A_3I -groups, we easily get the above state-