Notes on Beurling's theorem

To Professor Mitsuru Ozawa on the occasion of his 60th birthday

By Yukio NAGASAKA

(Received January 20, 1983)

For some harmonic function on a Riemann surface with Kuramochi boundary, fine limits exist on the boundary except for a set of capacity zero (Beurling type theorem, (1), (2)). The purpose of the present paper is to improve a result in (2).

Let R be an open Riemann surface and $\{R_n\}_{n=0}^{\infty}$ be an exhaustion of R. Let R^* be the Kuramochi compactification of R and \mathcal{I}_1 be the set of minimal points of $\Delta = R^* - R$. For any $p \in \Delta_1$, denote by \mathfrak{G}_p the family of open sets G in R such that R-G is N-thin at p. Let u be a harmonic function on *R*. For any $p \in \mathcal{A}_1$, then *N*-fine cluster set $u^N(p)$ is defined by $u^N(p) = \bigcap \{\overline{u(G)} :$ $G \in \mathfrak{G}_p$, where the closure u(G) is taken in extended real numbers. Let F be a closed set in R with piecewise analytic boundary ∂F and G be an open set in R containing F with piecewise analytic boundary. Suppose there is a Dirichlet finite function f in G-F with boundary values 1 on ∂F and 0 on ∂G . Denote by $\omega(\partial F, z, G-F)$ the unique function which gives the smallest Dirichlet integral among the functions like f. Let E be a closed set in Δ . Set $E_k = \left\{ z \in R : d(z, E) \leq \frac{1}{k} \right\}$, where d is a Kuramochi metric. Let E'_k be a closed set in R with piecewise analytic boundary such that $E_{k+1} \subset$ $E'_k \subset E_k - \partial E_k$. Then $\omega(E \cap B(F), z, G)$ is defined by $\lim_{k \to \infty} \omega(\partial(E'_k \cap F), z, G)$. k→∞ $E'_k \cap F$). Set $\omega(E \cap B(F), z) = \omega(E \cap B(F), z, R - R_0), \ \omega(E, z) = \omega(E \cap B(R - R_1), z)$ z) and $\omega(B(F), z) = \omega(\varDelta \cap B(F), z)$. A Borel set A on \varDelta is said to be a capacity zero if $\omega(E, z) = 0$ for any closed subset E of A.

Let u be a harmonic function on R. For any open set G in R, denote by $D_G(u)$ the Dirichlet integral of u on G. Let y be a real number. If there is a number $\delta > 0$ such that $D_{(a < u < b)}(u) = \infty$ for any interval (a, b) in $(y-\delta, y+\delta)$, then we call y an I-point. Denote by $\mathcal{E} = \mathcal{E}(u)$ the set of Ipoints. Then \mathcal{E} is an open subset of real numbers. For any component e=(c,d) of \mathcal{E} , denote by e_n the closed interval $\left[c-\frac{1}{n}, d+\frac{1}{n}\right]$.

DEFINITION 1. A harmonic function u on R is said to be almost Dirichlet finite, if $\lim_{n \to \infty} \omega(B(u^{-1}(e_n)), z) = 0$ on R for any component e of \mathcal{E} .