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Introduction.

The subject we treat in the present paper is the problem of global rigidity
of compact classical Lie groups as Riemannian manifolds imbedded
isometrically in the spaces of matrices.

Let $F$ be one of the fields $R$ , $C$ and $Q$ , where we mean by $R$ , $C$ and $Q$ the
field of real numbers, the field of complex numbers and the field of
quaternions. We denote by $G(n, F)$ the compact classical Lie group SO (ri),
$U(n)$ or $Sp(n)$ according as $F=R$ , $C$ or $Q$ . Let $M(n, F)$ be the space of
all $n\cross n$ matrices over $Fr$ Then there can be defined a euclidean inner
product in $M(n, F)$ invariant under left and right multiplications of matrices
contained in $G(n, F)$ . With this euclidean inner product $M(n, F)$ may be
regarded as a real euclidean space of dimension $n^{2}\cdot\dim_{R}F$ . Then the
induced metric on the submanifold $G=G(n, F)$ in $M(n, F)$ defines a
Riemannian metric on $G$ invariant under left and right actions of $G$ on itself.
The focus of this paper is the problem of global rigidity of the inclusion map
of the Riemannian manifold $G=G(n, F)$ into $M(n, F)$ , which is an
isometric imbedding.

Lef $f$ be an isometric immersion of a Riemannain manifold $M$ into the
$N$ -dimensional euclidean space $R^{N}$ . In his paper [9], N. Tanaka showed
that there is a linear differential operator $L$ associated with $f$ whose kernel
is naturally isomorphic with the space of infinitesimal isometric deformations
of $f$. He introduced the notion of elliptic isometric immersions and then
established the global rigidity theorem for elliptic isometric immersions:
Assume that an isometric immersion $f$ : $Marrow R^{N}$ satisfies the following
conditions: i) $M$ is compact; $ii$) $f$ is elliptic; $iii$) $f$ is globally infinitesi-

mally rigid, $i$ . $e.$ , dim $KerL= \frac{1}{2}N(N+1)$ . Then if two immersions $f_{1}$ and

$f_{2}$ of $M$ into $R^{N}$ lie both near to $f$ with respect to the $C^{3}$-topology, and if they
induce the same Riemannian metric, then there exists a unique euclidean
transformation $a$ of $R^{N}$ such that $f_{2}=af_{1}$ .

In the present paper we prove the following fact: Assume that $G$ is one


