On affine symmetric spaces and the automorphism groups of product manifolds

By Noboru Tanaka
(Received January 16, 1985)

Introduction

Let R be a manifold, and let E and F be two differential systems on R, i.e., subbundles of the tangent bundle $T(R)$ of R. Then the pair (E, F) is called a product structure on R, if it satisfies the following conditions:

(P. 1) $T(R) = E + F$ (direct sum),
(P. 2) Both E and F are completely integrable.

A manifold R equipped with a product structure (E, F) is called a product manifold. Let R (resp.R') be a product manifold, and (E, F) (resp. (E', F')) its product structure. By an isomorphism of R onto R' we mean a diffeomorphism ϕ of R onto R' such that the differential ϕ_* of ϕ sends E to E' and F to F'. Clearly the product $M \times N$ of two manifolds M and N, and hence its open submanifolds Ω become naturally product manifolds in our sense.

The main purpose of the present paper is to study the automorphism groups $\text{Aut}(\Omega)$ of product manifolds Ω together with some related problems, based on the results in our previous works [8], [12] and our recent work [13]. (For several years we have worked on the geometrizations of systems of ordinary differential equations, and the results, obtained, will be published in the near future as a series of papers under the title: On pseudo-product structures and the geometrizations of systems of ordinary differential equations, which we quote by [13])

First of all we shall explain the main theorem in the present paper.

Let \mathfrak{g} be a simple graded Lie algebra of the first kind, by which we mean a graded Lie algebra (over R), $\mathfrak{g} = \sum \mathfrak{b}_p$, satisfying the following conditions:

1) $\dim \mathfrak{g} < \infty$, and \mathfrak{g} is simple, 2) $\mathfrak{b}_{-1} = \{0\}$, and $\mathfrak{b}_p = \{0\}$ if $p \leq -2$ or $p \geq 2$. (Note that $\dim \mathfrak{b}_{-1} = \dim \mathfrak{b}_1$.) If we set $\mathfrak{h} = \mathfrak{b}_0$ and $\mathfrak{m} = \mathfrak{b}_{-1} + \mathfrak{b}_1$, we see that the system $\mathfrak{g} = \mathfrak{b} + \mathfrak{m}$ (direct sum), 2) $[\mathfrak{b}, \mathfrak{m}] \subset \mathfrak{m}$, and $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{h}$. Clearly the symmetric triple \mathfrak{g} is of simple and reducible type, that is, \mathfrak{g} is simple, and the linear isotropy representation of \mathfrak{b} on \mathfrak{m} is