The configurations of the M-curves of degree (4, 4) in $R P^{1} \times R P^{1}$ and periods of real $K 3$ surfaces

Dedicated to Professor Haruo Suzuki on his 60th birthday Sachiko Matsuoka
(Received August 4, 1989)

Abstract

For M-curves of degree (4, 4) in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$ whose components are all contractible, it is known that three configuration types are possible. We prove that all these configuration types are realized by some M-curves of degree (4,4) by means of the existence of locally universal families of real $K 3$ surfaces and the local surjectivity of period mappings defined over those families.

0 . Introduction.

We consider the zero set $\boldsymbol{R} A$ of a real homogeneous polynomial F $(\neq 0)$ of degree (d, r) in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$, where d and r are integers (≥ 1). We assume that the zero set A of F in $\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{1}$ is nonsingular. (In what follows, we write $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ for $\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{1}$.) Then A is a connected complex 1 -dimensional manifold. But $\boldsymbol{R} A$ is a possibly disconnected real 1 dimensional manifold (a disjoint union of finitely many copies of S^{1}) or the empty set. It is known that the number of the connected components of $\boldsymbol{R} A$ does not exceed $(d-1)(r-1)+1$ (see [5]). We remark that the number $(d-1)(r-1)$ is the genus of the nonsingular curve A. We say $\boldsymbol{R} A$ is an M-curve of degree (d, r) if it has precisely $(d-1)(r-1)+1$ connected components.

In this paper we make clear the "configurations" of the M-curves of degree (4, 4) in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$, where we consider only the curves whose components (embedded S^{1}) are all contractible in $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$. We define the meaning of the "configurations" as follows. In our cases, each component of $\boldsymbol{R} A$, which is called an oval, divides $\boldsymbol{R} P^{1} \times \boldsymbol{R} P^{1}$ into two connected components. One of those is homeomorphic to an open disk and called the interior of the oval. The other is called the exterior of that. As a consequence of [5], every M-curve of degree (4,4) lies in one of the following three cases (cf. Figure 1).
(1) Each of certain 9 ovals lies in the exteriors of the others, and the interior of one of those contains one oval. (Notation: $\frac{1}{1} 8$)

