The F. and M. Riesz theorem on certain transformation groups, II

by

Hiroshi YAMAGUCHI (Received July 19, 1989)

§1. Introduction.

The classical F. and M. Riesz theorem was extended, by Helson-Lowdenslager and deLeeuw-Glicksberg, to compact abelian groups with ordered duals. As an extension of the result of deLeeuw and Glicksberg, Forelli extended the F. and M. Riesz theorem to a (topological) transformation group in which the reals \boldsymbol{R} acts on a locally compact Hausdorff space.

On the other hand, the author ([14]) obtained several results, corresponding to Forelli's theorems, on a (topological) transformation group in which a compact abelian group acts on a locally compact Hausdorff space under certain conditions. In fact, the author obtained the following in [14].

THEOREM 1.1 (cf. [14, Theorem 1.1]). Let (G, X) be a transformation group in which G is a compact abelian and X is a locally compact Hausdorff space. Suppose (G, X) satisfies conditions (C. I) and (C. II)(see [14]). Let P be a semigroup in \hat{G} such that $P \cup (-P) = \hat{G}$. Let σ be a positive Radon measure on X that is quasi-invariant. Let $\mu \in M(X)$, and let $\mu = \mu_a + \mu_s$ be the Lebesgue decomposition of μ with respect to σ . Suppose $\operatorname{sp}(\mu) \subset P$. Then both $\operatorname{sp}(\mu_a)$ and $\operatorname{sp}(\mu_s)$ are contained in P. If, in addition, $P \cap (-P) = \{0\}$ and $\pi(|\mu|) \ll \pi(\sigma)$, then $\operatorname{sp}(\mu_s) \subset P \setminus \{0\}$, where $\pi: X \to X/G$ is the canonical map.

THEOREM 1.2 (cf. [14, Theorem 1.2]). Let (G, X) be as in Theorem 1.1. Let E be a subset of \hat{G} satisfying the following :

(*) For any nonzero measure $\lambda \in M_E(G)$, $|\lambda|$ and m_G are mutually absolutely continuous.

Let μ be a measure in M(X) with $sp(\mu) \subset E$. Then μ is quasi-invariant.

THEOREM 1.3 (cf. [14, Theorem 1.3]). Let (G, X) be as in Theorem 1.1. Let E be a Riesz set in \widehat{G} . Let μ be a measure in M(X) with