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\S 1. Introduction.

The classical F. and M. Riesz theorem was extended, by Helson-
Lowdenslager and deLeeuw-Glicksberg, to compact abelian groups with
ordered duals. As an extension of the result of deLeeuw and Glicksberg,
Forelli extended the F. and M. Riesz theorem to a (topological) transfor-
mation group in which the reals R acts on a locally compact Hausdorff
space.

On the other hand, the author ([14]) obtained several results, corre-
sponding to Forelli’s theorems, on a (topological) transformation group in
which a compact abelian group acts on a locally compact Hausdorff space
under certain conditions. In fact, the author obtained the following in
[14].

THEOREM 1. 1 (cf. [14, Theorem 1. 2]). Let (G, X) be a transforma-
tion group in which G is a compact abelian and X is a locally compact
Hausdorff space. Suppose (G, X) satisfies conditions (C. I) and (C. II)
{see [14] ) . Let P be a semigroup in \overline{G} such that P\cup(-P)=\hat{G}. Let \sigma be
a positive Radon measure on X that is quasi-invariant. Let \mu\in M(X) ,
and let \mu=\mu_{a}+\mu_{s} be the Lebesgue decomposition of \mu with respect to \sigma.
Suppose sp(\mu)\subset P. Then both sp(\mu_{a}) and sp(\mu_{s}) are contained in P. If
in addition, P\cap(-P)=\{0\} and \pi(|\mu|)\ll\pi(\sigma) , then sp(\mu_{s})\subset P\backslash \{0\} , where
\pi:Xarrow X/G is the canonical map.

THEOREM 1. 2 (cf. [14, Theorem 1. 2]). Let (G, X) be as in TheO-
rem 1. 1. Let E be a subset of \hat{G} satifying the following:

(^{*}) For any nonzero measure \mathcal{A}\in M_{E}(G) , |\mathcal{A}| and m_{G} are mutually
absolutely continuous.

Let \mu be a measure in M(X) with sp(\mu)\subset E. Then \mu is quasi-invariant.

THEOREM 1. 3 (cf. [14, Theorem 1. 3]). Let (G, X) be as in TheO-
rem 1. 1. Let E be a Riesz set in \hat{G} . Let \mu be a measure in M(X) with


