Finiteness of von Neumann algebras and non-commutative L^p -spaces

Keiichi WATANABE (Received May 15, 1989, Revised September 4, 1989)

0. Introduction

Murray and von Neumann introduced their equivalence relation among projections in a von Neumann algebra and proved that a factor is finite (i. e. every projection is finite) if and only if it has a finite trace. In [2], Cuntz and Pedersen defined another equivalence relation among all positive elements in a C^* -algebra, and proved that the algebra is finite if and only if there is a separating family of finite traces.

In this paper, we introduce an equivalence relation among the positive elements of a non-commutative L^p -space associated with an arbitrary von Neumann algebra, and we study the finiteness of non-commutative L^p -spaces with respect to it.

In $\S1$, we recall the definition of non-commutative L^p -spaces associated with an arbitrary von Neumann algebra defined by Haagerup [4]. For non-commutative L^p -spaces $L^p(N, \tau)$ arising from a semifinite von Neumann algebra N and its trace τ , the intersection $N \cap L^p(N, \tau)$ is L^{p} -norm dense in $L^{p}(N, \tau)$. Therefore one may naturally expect some similarity of their order structures between N and $L^p(N, \tau)$ even if there are significant differences, for example, the existence of an order unit. On the other hand, for non-commutative L^p -spaces $L^p(M)$ associated with an arbitrary von Neumann algebra M, it is well-known that any non-zero element in $L^p(M)$ is not bounded and that $M \cap L^p(M) = \{0\}$. Therefore we need some care to deal with them throughout the paper. In §2, we study the monotone order completeness of $L^p(M)$. Applying the result, we show in §3 that $L^p(M)$ has the asymmetric Riesz decomposition property, and we introduce an equivalence relation among the positive elements in $L^p(M)$. In §4, using the equivalence relation introduced in §3, we define a notion of finiteness of $L^p(M)$. Considering bounded linear functionals on $L^p(M)$ which satisfy the property as traces, we show that the finiteness of $L^p(M)$ agrees with that of M for the case of 1 .

The author would like to express his hearty thanks to Professor K.-S. Saito for his many suggestions. The author also wishes to extend his