On strongly separable extensions

Yasukazu YAMASHIRO Dedicated to Professor Kazuhiko HIRATA on his 60th birthday

(Received April 4, 1989, Revised December 7, 1989)

E. McMahon and A. C. Mewborn introduced a type of separable extensions in [4], which is called strongly separable extension. In this paper, we shall study some properties of strongly separable extensions corresponding to H-separable extensions. In § 1, we give some equivalent conditions (1.4) and in § 2, we give the commutor theorem for strongly separable extensions (2.5).

The author expresses his gratitude to professor Kazuhiko Hirata for his advices during the preparation of this paper.

1. Strongly separable extensions

Let R be a ring and M and N left R-modules. We shall denote M > N if M is a direct sum of submodules S and K such that $RS < \bigoplus_{R} (N \oplus \cdots \oplus N)$ and $\operatorname{Hom}(RK, RN) = 0$. It is easy to see that K coincides with the reject of N in M (cf. [1]), which is defined by

$$\operatorname{Rej}_{M}(N) = \bigcap \{ \ker f ; f \in \operatorname{Hom}(_{R}M,_{R}N) \}.$$

Using this notation, we can state that a ring Λ is a strongly separable extension of a subring Γ if and only if $\Lambda \otimes_r \Lambda \to \Lambda$ as Λ - Λ -medules.

LEMMA 1. 1. Let R be a ring and M and N left R-modules such that $M \gg N$. Then for every R-direct summand L_1 of M, $L_1 \gg N$.

PROOF. We can writ
$$M = L_1 \oplus L_2$$
 and $M = S \oplus K$ with ${}_RS < \bigoplus_R (N \oplus \cdots \oplus N)$, $\operatorname{Hom}({}_RK, {}_RN) = 0$.

Let π_1 and π_2 be projections of M to L_1 and L_2 , respectively, and p_K the projection M to K. By (8.18) in [1], we have $K = \pi_1(K) \oplus \pi_2(K)$. Then the restriction of $\pi_i p_K$ to L_i is the projection of L_i to $\pi_i(K)$ (i=1,2). Hence we can write $L_1 = S_1 \oplus \pi_1(K)$ and $L_2 = S_2 \oplus \pi_2(K)$. Then we have $M = S \oplus K = S_1 \oplus S_2 \oplus K$ and $S \cong M/K \cong S_1 \oplus S_2$. Hence $S_1 < \oplus S < \oplus (N \oplus \cdots N)$. Since $\pi_1(K) < \oplus K$, $\text{Hom}(_R\pi_1(K),_RN) = 0$. Then $L_1 \Rightarrow N$.

Let $\Gamma \subset B \subset \Lambda$ be rings. In case the map $B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ such that $b \otimes_{\lambda} \longmapsto b\lambda$ for $b \in B$ and $\lambda \in \Lambda$ splits as a $B \cdot \Lambda$ -map, we shall call briefly that $B \otimes_{\Gamma} \Lambda \longrightarrow \Lambda$ splits. In this case, by tensoring on the left with Λ over B, $\Lambda \otimes_{B} \Lambda < \bigoplus \Lambda \otimes_{\Gamma} \Lambda$ as $\Lambda \cdot \Lambda$ -modules. So, from the above lemma, we