Boundedness of minimizers

Giorgio TALENTI (Received February 22, 1989)

Abstract. We find conditions guaranteeing that solutions to typical problems of the calculus of variations are bounded.

1980 Mathematics Subject Classification (1985 Revision): 58E15.

§0 Introduction

Consider a variational problem of the following type:

(0.0) $\begin{cases} \int_{G} f(u, Du) dx = \text{minimum,} \\ \text{under the condition} : u = g \text{ on } \partial G. \end{cases}$

Here G, f, g are given; G is an open subset of euclidean space \mathbb{R}^n ; n, the dimension, is greater than 1; competing functions u are assumed to have scalar values. D stands for gradient and $dx = dx_1 \dots dx_n$, the Lebesgue *n*-dimensional measure.

We address ourselves to the following question. Suppose a minimizer exists and g, the boundary datum is bounded. Is such a minimizer bounded?

An approach to this question is using the Euler equation of problem (0,0) and developing maximum principles for weak solutions to nonlinear partial differential equations of elliptic type — one aim of an earlier paper [Tal]. This approach requires some smoothness of integrand f and essentially involves the first order derivatives of f.

In the present paper we merely assume a condition on the growth of integrand $f(u, \xi)$ with respect to the last variable ξ . In its simplest form, such a condition reads:

 $f(u, \xi) \ge A(|\xi|)$

for every scalar u and any vector ξ in \mathbb{R}^n . More generally, we assume

(0.1) $f(u, \xi) \ge A(|\xi|) - A(\lambda|u|).$

Here A is some Young function (see section 1(i)) and λ is some non-negative constant; $|\xi| = (\xi_1^2 + \ldots + \xi_n^2)^{1/2}$, the length of ξ .

Let B be any increasing function such that