On global hypoellipticity of horizontal Laplacians on compact principal bundles

Hideki OMORI (Recieved May 29, 1989)

Introduction

A differential operator L on a smooth $(=C^{\infty})$ manifold M is called hypoelliptic (cf. [4]), if the solutions u in the sence of distribution of the equation Lu=f are always smooth where f is smooth. In his interesting paper [5], Hörmander gave a sufficient condition for a second order differential operator to be hypoelliptic.

First of all, we shall repeat his result in a slightly different version from the original one, for this gives a motivation of this paper. Let $C^{\infty}(M)$ (resp. $C_0^{\infty}(M)$) be the space of all smooth functions on M (resp. with compact support). Let $X_1, X_2, ..., X_k$ be finitely many smooth tangent vector fields on M, and let \mathfrak{h} be the Lie algebra generated by

$$\{\sum_{1 \leq i \leq k} f_i X_i ; f_i \in C_0^{\infty}(\mathbf{M})\}$$

Theorem (cf. [5]). Suppose $\mathfrak h$ is infinitesimally transitive at every point $\mathfrak p$ of $\mathbf M$. Then, the differential operator $L=\sum_{1\leq i\leq k}X_i^*X_i$ is hypoelliptic where X_i^* is the formal adjoint operator of X_i with respect to an arbitrarily fixed smooth riemannian metric on $\mathbf M$.

Now in this paper, we assume that manifolds are always connected without boundary and satisfy the second countability axiom.

In the above theorem, remark at first that every $Y \subseteq \mathfrak{h}$ is a complete vector field. Since M is connected, the infinitesimal transitivity of \mathfrak{h} at every point p yields easily the transitivity of the group H generated by

$$\{\exp Y ; Y = \sum f_i X_i \text{ with } f_i, \dots, f_k \in C_0^{\infty}(\mathbf{M})\}$$

However it should be remarked that the converse in not necessarily true in the smooth case. This pathological phenomenon occurs in general if the Lie algebra $\mathfrak h$ has not the property that $\mathrm{Ad}(\exp Y)\mathfrak h=\mathfrak h$ for every $Y\in\mathfrak h$. So if it occurs, such a Lie algebra $\mathfrak h$ can not be the Lie algebra of any "infinite dimensional Lie group" (cf:[8]), that is, $\mathfrak h$ is non-enlargeable. A typical example of such Lie algebra is as follows (cf. [9]); Let