Some properties of Fourier transform for operators on homogeneous Banach spaces

Hang-Chin LAI and Cheng-Hsiang CHEN (Received January 9, 1991)

Abstract.

The Fourier transform of linear operator on a general homogeneous Banach space B in $L^1(G)$ for locally compact abelian group G is defined and characterized. It is proved that the Fourier transform of a linear operator is an operator valued continuous function on \hat{G} , th dual group of G, and vanishing at infinity. Convolution of function and operator is studied. Some linear operator on B is characterized as an integration of its Fourier transform over \hat{G} .

1. Introduction and preliminaries

Throughout the paper let G be a locally compact as well as a σ -compact abelian group, and let \hat{G} be its dual group. A homogeneous Banach space B is a dense subspace of $L^1(G)$ such that

(i) *B* is a Banach space under another norm $|| ||_B$ which is stronger than $L^1(G)$ -norm $|| ||_1$.

(ii) The norm $|| ||_B$ is translation invariant and $||R_x f - f||_B \to 0$ as $x \to 0$ in G where $R_x f(y) = f(y-x)$ for all x and y in G.

Some special homogeneous Banach spaces are investigated in Larsen [6], Lai [7-10]. For example, the spaces

$$A^{p}(G) = \{ f \in L^{1}(G) : \hat{f} \in L^{p}(\hat{G}), 1 \le p \le \infty \}$$

with norm $||f||_{A^{p}(G)} = ||f||_{1} + ||\hat{f}||_{p}$ and $A_{1,p}(G) = L^{1} \cap L^{p}(G)$ with norm $||f|| = ||f||_{1} + ||f||_{p}$

are homogeneous Banach spaces.

A homogeneous Banach space B may not admit multiplication by character $\gamma \in \hat{G}$, and even if it does, it may not be isometry under the norm $\| \|_{B}$ (see Reiter [15]). If for any $\gamma \in \hat{G}$, the operator

 $M_{\gamma}: f \in B \to \gamma \cdot f \in B$