Nonhomogeneity of Picard dimensions on the half ball

Hideo Imai

(Received June 21, 1994)

We denote by H^m the upper half space $\{x = (x_1, \dots, x_m) \in \mathbb{R}^m : x_m > 0\}$ in the Euclidean *m*-space $\mathbb{R}^m (m \ge 2)$ and by \widehat{H}^m the closure of H^m with respect to the one point compactification of \mathbb{R}^m . Setting $\delta H^m = \widehat{H}^m \setminus H^m$, we may view $\{x \in \widehat{H}^m : x_m = 0\}$ as a subset of an ideal boundary δH^m of H^m and the origin x = 0 as an ideal boundary point of H^m . Take the upper half ball $U_s^+ = \{x = (x_1, \dots, x_m) \in H^m : |x| < s\}$ ($0 < s \le 1$) which may be regarded as a relative neighbourhood of the ideal boundary point x = 0 of H^m . The set $\Gamma_s^+ \equiv \{x \in H^m : |x| = s\}$ is a relative boundary of U_s^+ and $\gamma_s^+ \equiv$ $\{x \in \delta H^m : |x| \le s\}$ is an ideal boundary of U_s^+ . Therefore the boundary ∂U_s^+ of U_s^+ and the closure \overline{U}_s^+ of U_s^+ in \widehat{H}^m are $\Gamma_s^+ \cup \gamma_s^+$ and $U_s^+ \cup \Gamma_s^+ \cup$ γ_s^+ , respectively. In particular we set $U_1^+ = U^+$ and $\Gamma_1^+ = \Gamma^+$. By a *density* P(x) on U_s^+ we mean a locally Hölder continuous function P(x) defined on $\overline{U}_s^+ \setminus \{0\}$. Hence P may have a singularity at the ideal boundary point x=0.

Consider the time independent Schrödinger equation

$$L_P u(x) \equiv -\bigtriangleup u(x) + P(x)u(x) = 0 \tag{1}$$

defined on $\overline{U}_s^+ \setminus \{0\}$, where \triangle is the Laplacian $\triangle = \sum_{i=1}^m \partial^2 / \partial x_i^2$. We are interested in the class $PP(U_s^+)$ of nonnegative solutions of (1) in U_s^+ with vanishing boundary values on $\partial U_s^+ \setminus \{0\}$. The first P indicates the dependence of the class on the density P and the second P stands for the initial of the term positive (nonnegative) so that the class associated with another density Q is denoted by $QP(U_s^+)$. It is convenient to consider the subclass $PP_1(U_s^+) \equiv \{u \in PP(U_s^+) : u(x_s) = 1\}$, where x_s is an arbitrary point fixed in U_s^+ . Since $PP_1(U_s^+)$ is a compact and convex set with respect to almost uniform convergence on U_s^+ , we can consider the set $ex. PP_1(U_s^+)$ of extreme points of $PP_1(U_s^+)$ and the cardinal number $\#(ex. PP_1(U_s^+))$ of $ex. PP_1(U_s^+)$ which will be referred to as the Picard dimension of (U_s^+, P) at x=0, dim (U_s^+, P) in notation:

$$\dim(U_s^+, P) = \#(ex. PP_1(U_s^+)).$$

In particular we say that the *Picard principle* is valid for (U_s^+, P) at x=0