On a super class of *p*-hyponormal operators

B.P. Duggal

(Received January 24, 1995; Revised June 21, 1995)

Abstract. Given an operator A on a Hilbert space \mathcal{H}, A is said to be p-hyponormal $(0 if <math>(AA^*)^p \le (A^*A)^p$. The class H(p) of p-hyponormal operators has been studied in a number of papers in the recent past. Let K(p) denote the class of operators A for which $((AA^*)^p x, x) \le ||x||^{2(1-p)} (A^*Ax, x)^p$ for all $x \in \mathcal{H}$. Then $H(p) \subset K(p)$. In this note we study the spectral properties of operators in K(p), and show that a number of the properties enjoyed by hyponormal operators carry over to K(p). Our arguments often lead to an alternative, sometimes simpler, proof of the results for H(p).

Key words: p-hyponormal operators, class K(p), spectral properties.

1. Introduction

We consider operators (i.e., bounded linear transformations) on a complex Hilbert space \mathcal{H} . The operator A is said to be p-hyponormal, $0 , if <math>(AA^*)^p \le (A^*A)^p$. It is an easy consequence of the Löwner inequality that a p-hyponormal operator is q-hyponormal for all $0 < q \le p$. In particular, a 1-hyponormal (or simply hyponormal) operator is p-hyponormal for all 0 , and in studying <math>p-hyponormal operators for a general $0 it is sufficient to consider <math>0 . Semi-hyponormal (or, <math>\frac{1}{2}$ -hyponormal) operators were introduced by Xia [20], and p-hyponormal operators for 0 were first studied by Aluthge [1]. Recently there have been a number of papers, especially by Muneo Cho et al. [2, 3, 4, 5, 6] and Masatoshi Fujii et al. [10, 11], on <math>p-hyponormal operators, their spectral properties and their relationship to other classes of operators. Generally speaking p-hyponormal have properties very similar to hyponormal operators [1, 2, 3, 4, 5, 6, 10, 20, 21].

Let H(p) denote the class of p-hyponormal operators, $0 . Then <math>((AA^*)^p x, x) \le ((A^*A)^p x, x) \le \|x\|^{2(1-p)} (A^*Ax, x)^p$ for all $x \in \mathcal{H}$. Let K(p), 0 , denote the class of operators <math>A for which $((AA^*)^p x, x) \le \|x\|^{2(1-p)} (A^*Ax, x)^p$. Then $H(p) \subset K(p)$ and the class K(p) is monotone decreasing on p; also, operators $A \in K(p)$ are paranormal, i.e., if $A \in K(p)$

¹⁹⁹¹ Mathematics Subject Classification: 47B20, 47A30.