On some generalized difference sequence spaces and related matrix transformations

Rifat Colak and Mikail Et

(Received October 12, 1995; Revised January 29, 1997)

Abstract. In this paper we introduce β -duals and γ -duals of the sequence spaces $l_{\infty}(\Delta^m)$, $c(\Delta^m)$, $(m \in \mathbb{N})$ where for instance $l_{\infty}(\Delta^m) = \{x = (x_k) : (\Delta^m x_k) \in l_{\infty}\}$, and we characterize some matrix classes related with these sequence spaces. This study generalizes some results of Kızmaz [4] in special cases.

Key words: difference sequences, matrix transformations, β -dual, γ -dual.

1. Introduction

Let l_{∞} , c, and c_0 be the linear spaces of bounded, convergent and null sequences $x = (x_k)$ with complex terms, respectively, normed by

$$||x||_{\infty} = \sup_{k} |x_k|$$

where $k \in \mathbf{N} = \{1, 2, \ldots\}$, the set of positive integers.

Kızmaz [4] defined the sequence spaces

$$l_{\infty}(\Delta) = \{x = (x_k) : \Delta x \in l_{\infty}\},\$$

$$c(\Delta) = \{x = (x_k) : \Delta x \in c\},\$$

$$c_0(\Delta) = \{x = (x_k) : \Delta x \in c_0\}$$

where $\Delta x = (\Delta x_k) = (x_k - x_{k+1})$, and showed that these are Banach spaces with norm

$$||x|| = |x_1| + ||\Delta x||_{\infty}.$$

After then Et [1] defined the sequence spaces

$$l_{\infty}(\Delta^2) = \{x = (x_k) : \Delta^2 x \in l_{\infty}\},$$

$$c(\Delta^2) = \{x = (x_k) : \Delta^2 x \in c\},$$

$$c_0(\Delta^2) = \{x = (x_k) : \Delta^2 x \in c_0\}$$