Boundedness of the multiple singular integral operators on product spaces*

Guoen Hu, Bolin MA and Qiyu Sun

(Received April 12, 1999; Revised October 27, 1999)

Abstract. In this paper, we consider the $L^p(\mathbb{R}^m \times \mathbb{R}^n)$ boundedness for the multiple singular integral operators of Fefferman type, defined by

$$Tf(x_1, x_2) = \text{p. v.} \int_{\mathbb{R}^m \times \mathbb{R}^n} h(|y_1|, |y_2|) \frac{\Omega(y_1', y_2')}{|y_1|^m |y_2|^n} f(x_1 - y_1, x_2 - y_2) dy_1 dy_2,$$

where $y_1 \in \mathbb{R}^m$, $y_2 \in \mathbb{R}^n$ and $y_i' = y_i/|y_i|$, h(r,s) is bounded on $\mathbb{R}_+ \times \mathbb{R}_+$, Ω satisfies the cancellation condition

$$\int_{S^{m-1}} \Omega(y_1', y_2') dy_1' = \int_{S^{m-1}} \Omega(y_1', y_2') dy_2' = 0.$$

We show that if $\Omega \in L(\log^+ L)^2(S^{m-1} \times S^{n-1})$, then T is bounded on $L^p(\mathbb{R}^m \times \mathbb{R}^n)$ for all 1 .

Key words: multiple singular integral operator, Fourier transform estimate, Littlewood-Paley theory.

1. Introduction and Statement of the Result

Let h(r,s) be a bounded function on $\mathbb{R}_+ \times \mathbb{R}_+$, and $\Omega(y_1, y_2)$ a function defined on $S^{m-1} \times S^{n-1}$ $(m, n \geq 2)$ satisfying

$$\int_{S^{m-1}} \Omega(y_1', y_2') dy_1' = \int_{S^{n-1}} \Omega(y_1', y_2') dy_2' = 0, \tag{1}$$

where S^{m-1} (resp. S^{n-1}) is the unit sphere of \mathbb{R}^n (resp. \mathbb{R}^m). For $y \in \mathbb{R}^m$, let y' = y/|y|. Define the multiple singular integral operator

$$Tf(x_1, x_2) = \text{p. v.} \int_{\mathbb{R}^m \times \mathbb{R}^n} h(|y_1|, |y_2|) \frac{\Omega(y_1', y_2')}{|y_1|^m |y_2|^n} f(x_1 - y_1, x_2 - y_2) dy_1 dy_2.$$
 (2)

¹⁹⁹¹ Mathematics Subject Classification: 42B20.

^{*}Supported by the NSF of China (19701039, 19971010) and the Hunan Provincial Sciences foundation of China.