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On the Schur indices of the irreducible characters
of SL(n, q)
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Abstract. We shall give some sufficient conditions subject for that the Schur indices
of irreducible characters of the special linear groups over finite fields are equal to one.
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Introduction

Let S denote the special linear group SL(n, q) of degree n\geqq 2 over a
finite field F_{q} with q elements of characteristic p. If \chi is a complex irreducible
character of a finite group and K is a field of characteristic 0, then m_{K}(\chi)

denotes the Schur index of \chi with respect to K. where we consider \chi as a
character over some algebraically closed extension of K . Then the following
results are known:

Theorem A (R. Gow [3]) For any (complex) irreducible character \chi of
S, we have m_{\mathbb{Q}}(\chi)\leqq 2 .

Theorem B (A.V . Zelevinsky [15]) Assume that p=2 . Then, for any
irreducible character \chi of S, m_{\mathbb{Q}}(\chi)=1 .

Theorem C (Z. Ohmori [9]) Assume that p\neq 2 and n is odd. Then, for
any irreducible character \chi of S, m_{\mathbb{Q}}(\chi)=1 .

Theorem D (Gow [3]) Assume that p\neq 2 , n is even, and ord_{2}n>

ord_{2}(p-1) . Then, for any irreducible character \chi of S, m_{\mathbb{Q}}(\chi)=1 .

Theorem E (Gow [3]) Assume that p\neq 2 , n is even, ord_{2}n\leqq ord_{2}(p-

1) , and q is an even power of p . Let \chi be any irreducible character of S .
Then, if \chi(-1_{n})=\chi(1_{n}) , we have m_{\mathbb{Q}}(\chi)=1 . If \chi(-1_{n})=-\chi(1_{n}) , then,

for any prime number r\neq p , we have m_{\mathbb{Q}_{r}}(\chi)=1 .

Theorem F (Gow [3]) Assume that p\neq 2 and n=4m for some positive
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