Examples of compact Toeplitz operators on the Bergman space

Kazuhiro KASUGA

(Received August 2, 2000)

Abstract. R. Yoneda studied compact Toeplitz operators on the Bergman space for special symbols and he posed several problems. In this paper, we give counterexamples for some of these problems.

Key words: Bergman space, Toeplitz operator, compact operator.

1. Introduction

Let D be the open unit disc in the complex plane \mathbb{C} . Let dA be the normalized area measure on D. The Bergman space on D, denoted by $L^2_a(D)$, is the space of analytic functions f on D such that

$$||f||^2 = \int_D |f(z)|^2 dA(z) < \infty.$$

Let P be the orthogonal projection from $L^2(D, dA)$ onto $L^2_a(D)$. For ϕ in $L^{\infty}(D)$ the Toeplitz operator $T_{\phi} : L^2_a(D) \to L^2_a(D)$ is defined by $T_{\phi}f = P(\phi f), f \in L^2_a(D)$. Put

$$k_z(w) = \frac{1 - |z|^2}{(1 - \bar{z}w)^2}$$
 for $z, w \in D$,

and k_z is called the normalized reproducing kernel for z. For $z \in D$, define

$$\varphi_z(w) = \frac{z-w}{1-\bar{z}w}, \quad w \in D.$$

It is known several characterization for the compactness of T_{ϕ} . In [5, Theorem 4], Zheng proved the next theorem.

Theorem A Let ϕ be in $L^{\infty}(D)$. Then the following are equivalent.

- (i) T_{ϕ} is a compact operator on $L^2_a(D)$.
- (ii) $||T_{\phi}k_z|| \rightarrow 0 \text{ as } |z| \rightarrow 1-.$

¹⁹⁹¹ Mathematics Subject Classification : 47B35, 47B07.