Analytic foliations and center problem

Djibrilla Garba Belko

(Received February 1, 1999; Revised April 26, 2000)

Abstract. We prove a real version of Lins Neto's synthesis Theorem. The technics used, allow us to give a foliation without Liouvillian first integral and which restricts to center on the fixed point set of many antiholomorphic involutions leaving \mathcal{F} invariant.

Key words: holomorphic 1-forms - center - reduction of singularities - groups of diffeomorphisms - antiholomorphic involutions - Liouvillian first integral.

1. Introduction

Let \mathcal{F} and σ be germs of holomorphic foliation and antiholomorphic involution at $0 \in \mathbb{C}^2$. It is well known that if $\sigma^*\mathcal{F} = \mathcal{F}$ then \mathcal{F} restricts to a real foliation on the fixed point set of σ (Fix $_{\sigma}$). We say that $\mathcal{F}_{/\text{Fix}_{\sigma}}$ is monodromic if to each germ of real analytic curve $\tau : \mathbf{R}_0^+ \to \text{Fix}_{\sigma,\tau(0)}$ corresponds a Poincaré return map \mathcal{P} (for t small enough the leaf of \mathcal{F} , which passes through $\tau(t)$ cuts again $\tau(\mathbf{R}_0^+)$ at $\mathcal{P}(\tau(t))$). When \mathcal{P} is the germ of identity, we say that $\mathcal{F}_{/\text{Fix}_{\sigma}}$ is a center. The simplest example of center is the one defined by the levels of the function $f(x,y) = x^2 + y^2$, or equivalently by the 1-form $\omega = x \, dx + y \, dy$. The complexification of \mathcal{F}_{ω} , denoted $\mathcal{F}_{\omega}^{\mathbf{C}}$, is the germ of foliation at $0 \in \mathbf{C}^2$ defined by 1-form $\omega^{\mathbf{C}}$, whose restriction on \mathbf{R}_0^2 is ω . This example corresponds to the case where $\mathcal{F}_{\omega}^{\mathbf{C}}$ has two holomorphic invariant curves and has the following property (cf. 4.2):

1. for each antiholomorphic involution σ which does not fix any invariant curve of $\mathcal{F}^{\mathbf{C}}_{\omega}$ and such that $\sigma^*\mathcal{F}^{\mathbf{C}}_{\omega} = \mathcal{F}^{\mathbf{C}}_{\omega}$, $\mathcal{F}^{\mathbf{C}}_{\omega/\operatorname{Fix}_{\sigma}}$ is a center.

When $\mathcal{F}^{\mathbf{C}}_{\omega}$ has two invariant tangent curves (node), according to Brunella [Br], the assumption of center and some generic conditions on ω ensure that there exists an elementary mutiform first integral for ω [CM]. We are interested in centers whose complexification has four invariant curves. That is the simplest case after the one described above, since the complexification of a germ of real analytic foliation which is a center has an even number of