Scattering theory and large time asymptotics of solutions to the Hartree type equations with a long range potential

Nakao HAYASHI and Pavel I. NAUMKIN

(Received August 4, 1999; Revised January 14, 2000)

Abstract. We study the scattering problem and asymptotics for large time of solutions to the Hartree type equations

$$iu_t = -\frac{1}{2}\Delta u + f(|u|^2)u, \quad (t,x) \in \mathbf{R} \times \mathbf{R}^n, \quad u(0,x) = u_0(x), \quad x \in \mathbf{R}^n, \quad n \ge 1,$$

where the nonlinear interaction term is $f(|u|^2) = V * |u|^2$, $V(x) = \lambda |x|^{-\delta}$, $\lambda \in \mathbf{R}$, $0 < \delta < 1$. We suppose that in the case $n \ge 2$ the initial data $u_0 \in H^{n+2,0} \cap H^{0,n+2}$ and the value $\epsilon = ||u_0||_{H^{n+2,0}} + ||u_0||_{H^{0,n+2}}$ is sufficiently small and in one-dimensional case (n = 1) we assume that $e^{\beta |x|} u_0 \in L^2$, $\beta > 0$ and the value $\epsilon = ||e^{\beta |x|} u_0||_{L^2}$ is sufficiently small. Then we prove that there exists a unique final state $\hat{u}_+ \in H^{n+2,0}$ such that the asymptotics

$$u(t,x) = \frac{1}{(it)^{\frac{n}{2}}} \hat{u}_{+}\left(\frac{x}{t}\right) \exp\left(\frac{ix^{2}}{2t} - \frac{it^{1-\delta}}{1-\delta}f(|\hat{u}_{+}|^{2})\left(\frac{x}{t}\right) + O(1+t^{1-2\delta})\right) + O(t^{-n/2-\delta})$$

is true as $t \to \infty$ uniformly with respect to $x \in \mathbf{R}^n$ with the following decay estimate $\|u(t)\|_{L^p} \leq C\epsilon t^{\frac{n}{p}-\frac{n}{2}}$, for all $t \geq 1$ and for every $2 \leq p \leq \infty$. Furthermore we show that for $\frac{1}{2} < \delta < 1$ there exists a unique final state $\hat{u}_+ \in H^{n+2,0}$ such that

$$\|u(t) - \exp\left(-\frac{it^{1-\delta}}{1-\delta}f(|\hat{u}_{+}|^{2})\left(\frac{x}{t}\right)\right)U(t)u_{+}\|_{L^{2}} = O(t^{1-2\delta})$$

for all $t \geq 1$, and the asymptotic formula

$$u(t,x) = \frac{1}{(it)^{\frac{n}{2}}} \hat{u}_{+}\left(\frac{x}{t}\right) \exp\left(\frac{ix^{2}}{2t} - \frac{it^{1-\delta}}{1-\delta}f(|\hat{u}_{+}|^{2})\left(\frac{x}{t}\right)\right) + O(t^{-n/2+1-2\delta}),$$

is valid as $t \to \infty$ uniformly with respect to $x \in \mathbf{R}^n$, where $\hat{\phi}$ denotes the Fourier transform of the function ϕ , $H^{m,s} = \{\phi \in \mathcal{S}'; \|\phi\|_{m,s} = \|(1+x^2)^{s/2}(1-\Delta)^{m/2}\phi\|_{L^2} < \infty\}$, $m, s \in \mathbf{R}$. Analogous results are obtained for the following NLS equation

$$iu_t = -\frac{1}{2}\Delta u + \lambda t^{n-\delta} |u|^2 u$$

with cubic nonlinearity and growing with time coefficient, where $0 < \delta < 1$, $n \ge 1$.

Key words: Scattering theory, Hartree equation, long range potential.

1991 Mathematics Subject Classification : 35Q55.