A generalization of the Lieb-Thirring inequalities in low dimensions

Kazuya TACHIZAWA

(Received February 13, 2002)

Abstract. We give an estimate for the moments of the negative eigenvalues of elliptic operators on \mathbb{R}^n in low dimensions. The estimate is a generalization of the Lieb-Thirring inequalities in one or two dimensions. We use the φ -transform decomposition of Frazier and Jawerth.

Key words: elliptic operator, eigenvalues, φ -transform, A_p -weights.

1. Introduction

For a real-valued measurable function V on \mathbb{R}^n we set

$$V_{+}(x) = \max(V(x), 0)$$
 and $V_{-}(x) = \max(-V(x), 0)$.

The Lieb-Thirring inequalities state

$$\sum_{i} |\lambda_{i}|^{\gamma} \le c_{n,\gamma} \int_{\mathbb{R}^{n}} V_{-}^{n/2+\gamma} dx \tag{1}$$

for suitable $\gamma \geq 0$, where $\lambda_1 \leq \lambda_2 \leq \cdots$ are the negative eigenvalues of the Schrödinger operator $-\Delta + V$ on $L^2(\mathbb{R}^n)$. The inequality (1) holds if and only if

$$\gamma \ge \frac{1}{2}$$
 for $n = 1$,
 $\gamma > 0$ for $n = 2$,
 $\gamma \ge 0$ for $n \ge 3$.

The case $\gamma > 1/2$, n = 1, $\gamma > 0$, $n \ge 2$ was proved by Lieb and Thirring ([8]). They applied the inequality (1) to the problem of the stability of matter. The case $\gamma = 1/2$, n = 1 was proved by Weidl ([18]). The case $\gamma = 0$, $n \ge 3$ was established by Cwikel ([1]), Lieb ([7]) and Rozenbljum ([12], [13]). Some generalizations and variations of the Lieb-Thirring inequalities