Partial regularity of solutions of nonlinear quasimonotone systems

Christoph HAMBURGER

(Received November 5, 2001; Revised April 16, 2002)

Abstract. We prove partial regularity of weak solutions u of the nonlinear strictly quasimonotone system div A(x, u, Du) + B(x, u, Du) = 0 under natural polynomial growth, assuming that the coefficient function A(x, u, P) is Hölder continuous in (x, u) and of class C^1 in P, and that $A(x, u, P) \cdot P \ge F(x, P)$ for some continuous function F which is strictly quasiconvex at zero.

Key words: partial regularity, weak solution, nonlinear system, quasilinear system, quasimonotonicity, ellipticity, natural growth.

1. Introduction

We are interested in the regularity of the vector-valued weak solutions $u \in W^{1,2}(\Omega, \mathbf{R}^N)$ of the nonlinear system

$$\operatorname{div} A\left(x, u, Du\right) + B\left(x, u, Du\right) = 0, \tag{1}$$

or, in components,

$$\sum_{\alpha=1}^{n} D_{\alpha} \left(A_{i}^{\alpha} \left(x, u, Du \right) \right) + B_{i} \left(x, u, Du \right) = 0 \text{ for } i = 1, \dots, N.$$

Here Ω is a bounded open subset of \mathbf{R}^n , $n \ge 2$, $N \ge 1$, and $Du(x) \in \mathbf{R}^{N \times n}$ denotes the gradient of u at a.e. point $x \in \Omega$. The coefficient functions Aand B are defined on the set

$$\mathfrak{Z} = \overline{\Omega} \times \mathbf{R}^N \times \mathbf{R}^{N \times n}$$

with values in $\mathbf{R}^{N \times n}$ and \mathbf{R}^N respectively.

Definition 1 We say that $u \in W^{1,2}(\Omega, \mathbb{R}^N)$ is a *weak solution* of the system (1) if A(x, u, Du) and B(x, u, Du) are locally integrable and

$$\int_{\Omega} A(x, u, Du) \cdot D\varphi \, dx = \int_{\Omega} B(x, u, Du) \cdot \varphi \, dx \tag{2}$$

²⁰⁰⁰ Mathematics Subject Classification: 35J60, 35B65, 35D10.