Subclasses of certain analytic functions

Dinggong YANG and Shigeyoshi OWA

(Received August 31, 2001; Revised February 12, 2002)

Abstract. Let \mathcal{A} be the class of functins f(z) which are analytic in the open unit disc \mathbb{E} with f(0) = 0 and f'(0) = 1. Two subclasses of \mathcal{A} with some inequalities are defined. The object of the present paper is to consider some properties for functions f(z) belonging to these classes.

Key words: analytic function, univalent function, starlike function, subordination.

1. Introduction

Let \mathcal{A} denote the class of functions f(z) of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disc $\mathbb{E} = \{z \in \mathbb{C} : |z| < 1\}$. We denote by S the subclass of \mathcal{A} consisting of functions f(z) which are univalent in \mathbb{E} . A function $f(z) \in \mathcal{A}$ is called starlike in |z| < r ($0 < r \leq 1$) if it satisfies

$$\operatorname{Re}\left\{rac{zf'(z)}{f(z)}
ight\} > 0 \qquad (|z| < r).$$

For a function $f(z) \in \mathcal{A}$, we say that f(z) is in the class $\mathcal{H}(\lambda, \mu)$ if and only if it satisfies the conditions $\frac{f(z)}{z} \neq 0$ $(z \in \mathbb{E})$ and

$$\left|\frac{z^2 f'(z)}{f(z)^2} - \lambda z^2 \left(\frac{z}{f(z)}\right)'' - 1\right| < \mu \qquad (z \in \mathbb{E}),\tag{1}$$

where λ is a complex number with $\operatorname{Re}(\lambda) \geq 0$ and μ is a positive real number. Also we define the class $\mathcal{H}_0(\lambda, \mu)$ by

$$\mathcal{H}_0(\lambda,\mu) = \{ f(z) \in \mathcal{H}(\lambda,\mu) : f''(0) = 0 \}.$$

Nunokawa, Obradović and Owa [2] proved that if $f(z) \in \mathcal{A}$ with

2000 Mathematics Subject Classification : 30C45.