Nonlinear Schrödinger equations with Stark potential

Rémi CARLES and Yoshihisa NAKAMURA
(Received March 13, 2003; Revised April 14, 2003)

Abstract. We study the nonlinear Schrödinger equations with a linear potential. A change of variables makes it possible to deduce results concerning finite time blow up and scattering theory from the case with no potential.

Key words: nonlinear Schrödinger equations, Stark effect, Avron-Herbst formula, pseudo-conformal conservation law, finite time blow up.

1. Introduction

In this note, we consider the nonlinear Schrödinger equation with Stark effect,

\[
\begin{aligned}
 i\varepsilon \partial_t u + \frac{1}{2} \varepsilon^2 \Delta u &= V(x)u + \lambda |u|^{2\sigma} u, \\
 u|_{t=0} &= u_0,
\end{aligned}
\]

(1.1)

where \(x \in \mathbb{R}^n \), and the potential \(V \) is linear,

\[
 V(x) = E \cdot x; \ E = (E_1, \ldots, E_n) \in \mathbb{R}^n \setminus \{0\}.
\]

(1.2)

We assume that \(\varepsilon \in]0, 1] \), \(\lambda \in \mathbb{R} \), \(\sigma > 0 \), and \(\sigma < 2/(n-2) \) if \(n \geq 3 \).

The vector \(E \) may represent a constant electric field (see e.g. [6]), or gravity (see e.g. [25]). We introduce the factor \(\varepsilon \) to treat both the quantum case where \(\varepsilon = \hbar \) (see e.g. [25]), and the case \(\varepsilon = 1 \), where the nonlinear Schrödinger equation may appear as an envelope equation (see e.g. [24], [8], [13]).

We compare solutions of (1.1) with solutions to the nonlinear Schrödinger equation,

\[
 2000 \text{ Mathematics Subject Classification : 35Q55, 35B05, 35P25.}
\]

This work was partially supported by the ACI grant "Équation des ondes : oscillations, dispersion et contrôle" (first author) and the JSPS Research Fellowships for Young Scientists (second author).