On the excesses of sequences of complex exponentials

Alexander Kheyfits

(Received August 26, 2002; Revised April 24, 2003)

Abstract. We derive an equation for the excess in $L^2(-\pi, \pi)$ of a sequence of complex exponentials $\{e^{i\lambda_n t}\}_{-\infty}^{\infty}$ with $|\lambda_n - n| \leq \Delta < \infty$, $\forall n$, consider examples, and study the stability of the excess under small perturbations of λ_n .

Key words: L2-completeness, excess.

1. Introduction

Let $\Lambda = \{\lambda_n\}_{n=-\infty}^{\infty}$ be a sequence of complex numbers and $E(\Lambda) = \{e^{i\lambda_n t}\}_{-\infty}^{\infty}$.

The system $E(\Lambda)$ is said to be closed in $L^2(a, b)$ if there is no nontrivial function $f \in L^2(a, b)$ orthogonal to all functions in $E(\Lambda)$. The system $E(\Lambda)$ is said to be complete in $L^2(a, b)$ if each function $f \in L^2(a, b)$ can be approximated by the functions in $E(\Lambda)$ in the $L^2(a, b)$ -norm.

Otherwise, the system is called *incomplete* in $L^2(a, b)$. It is known [9, Section 11] that in L^2 these two properties are equivalent.

The system is called minimal in $L^2(a, b)$ if each element of the system lies outside the closed linear span of the others. A closed minimal system is called exact. A closed system that remains closed if $r \geq 0$ of its terms are removed, but fails to be closed after removing r+1 terms, is said to have the excess $r = \exp(E(\Lambda)) = r(\Lambda)$. If a non-closed system becomes exact after adding -r, r < 0, elements, the system is said to have the deficiency (negative excess) r. Thus, the system is exact if and only if its excess r = 0. If the system remains closed after removing any finite number of its terms, then the excess $r = \infty$, and if the system cannot be made closed by adding any finite number of elements, then the excess $r = -\infty$.

Since "The terminology of the subject is not uniform..." (R. Young [12, p. 16, footnote]), it should be mentioned that in terminology we follow [9].

An extensive literature devoted to the study of closed, minimal, etc.,