Non-closed minimal hypersurfaces of $\mathbb{S}^4(1)$ with identically zero Gauß-Kronecker curvature

Tsasa Lusala

(Received December 12, 2001; Revised July 8, 2002)

Abstract. We give a partial local description of minimal hypersurfaces M^3 with identically zero Gauß-Kronecker curvature function in the unit 4-sphere $\mathbb{S}^4(1)$, without assumption on the compactness of M^3 .

Key words: minimal hypersurfaces in spheres, isoparametric hypersurfaces, identically zero Gauß-Kronecker curvature, nowhere zero second fundamental form.

1. Introduction

Let $x: M^3 \longrightarrow \mathbb{S}^4(1) \subset \mathbb{R}^5$ be a hypersurface immersion of a connected and orientable 3-dimensional manifold M^3 of class C^{∞} into $\mathbb{S}^4(1) \subset \mathbb{R}^5$. Let λ_1, λ_2 and λ_3 be the three principal curvature functions. The normalized elementary symmetric curvature functions of the immersion x are given by:

$$H := rac{1}{3} (\lambda_1 + \lambda_2 + \lambda_3),$$
 $H_2 := rac{1}{3} (\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3),$ $K := \lambda_1 \lambda_2 \lambda_3.$

S. Almeida and F. Brito [1] suggested to classify closed hypersurface immersions for which two of the three functions H, H_2 , K are constant. The paper [3] gives a survey of results on closed hypersurfaces in $\mathbb{S}^4(1)$ with two constant curvature functions.

Particularly, the paper [2] investigated closed minimal hypersurfaces with constant Gauß-Kronecker curvature function, corresponding to $H \equiv 0$ and $K \equiv \text{const.}$ There it is proved that closed minimal hypersurfaces with constant Gauß-Kronecker curvature $K \neq 0$ are isoparametric, therefore closed minimal hypersurfaces with constant Gauß-Kronecker curvature

²⁰⁰⁰ Mathematics Subject Classification: 53B25, 53C40.

This work was partially supported by the DFG-project Si-163/7-2 and a DFG-NSFC exchange project.