Dominated semigroups of operators and evolution processes

Brian Jefferies and Susumu Okada

(Received April 3, 2002)

Abstract. A semigroup S acting on a Banach lattice E is said to be dominated if there exists a positive semigroup T such that $|S(t)x| \le T(t)|x|$ for all $x \in E$ and t > 0. It is shown that a semigroup on L^p is dominated if and only if it is associated with a family of operator valued measures.

Key words: dominated semigroup, evolution equation, modulus, regular operator, variation.

Introduction

The problem of determining when a semigroup S of operators acting on a Dedekind complete Banach lattice is dominated by a semigroup T of positive operators is an old one. Because $|S(t)x| \leq T(t)|x|$ for each element x, it follows that S(t) must be a regular operator for each $t \geq 0$. A related question is when does the smallest such semigroup |S| exist — the modulus semigroup of S. Although a C_0 -contraction semigroup on L^1 is dominated by a positive semigroup (see [12], [14]), C. Kipnis [12, pp. 374–376] gives an example of a C_0 -semigroup on ℓ^1 which is not dominated by any positive semigroup. Other examples are provided by the semigroups T_z mentioned below with $\Im z > 0$ and $\Re z \neq 0$. A sufficient condition that a semigroup S on an S0 on an S1 on S2 on S3 on an S3 on S4 of S5 on all S5 on S6 of S6 on all S7 on all S8 on all S9 on the regular norm), then S9 is dominated and if, in addition, S9 is a S9 one semigroup, then the modulus semigroup S1 is also a S9-semigroup.

Regular operators R acting on L^p -spaces were characterised in [10] in terms of an operator bound of the form

²⁰⁰⁰ Mathematics Subject Classification: Primary 47D06, 28B15; Secondary 47B65. The research of the first author was supported by the Australian Research Council.