Rational Curves on Hypersurfaces

Yuan Wang

Abstract

Let (X, D) be a pair where X is a projective variety. We study in detail how the behavior of rational curves on X and the positivity of $-\left(K_{X}+D\right)$ and D influence the behavior of rational curves on D. In particular, we give criteria for uniruledness and rational connectedness of components of D.

1. Introduction

For a projective variety X, the connection between the positivity of $-K_{X}$ and the behavior of rational curves on X is well understood. Uniruledness and rational connectedness are possibly two birational properties of smooth varieties that have been the most intensively studied. A result of Miyaoka and Mori [MM86] shows that a smooth projective variety X is uniruled if and only if there exists a K_{X}-negative curve through every general point of X. Later Boucksom, Demailly, Păun, and Peternell [BDPP13] proved that if the canonical divisor of a projective manifold X is not pseudoeffective, then X is uniruled. The rational connectedness of smooth Fano varieties was established by Campana [Cam92] and Kollár, Miyaoka, and Mori [KMM92], and it was later generalized to the log Fano cases by Zhang [Zha06] and Hacon and McKernan [HM07].

A natural question is how the behavior or rational curves on a variety X influences the behavior of rational curves on a hypersurface D. An easy case is where $X=\mathbb{P}^{n}$; then a general hypersurface of degree $\leq n$ is rationally connected. More generally, if (X, D) is a plt pair and $-\left(K_{X}+D\right)$ is ample, then by the adjunction formula we have $\left.\left(K_{X}+D\right)\right|_{D}=K_{D}+\operatorname{Diff}_{D}(0)$, which is antiample and klt. So by [Zha06, Theorem 1] D is rationally connected and, in particular, uniruled. However, if we assume that $-\left(K_{X}+D\right)$ is big and semiample instead of ample, then the following example shows that D is not necessarily uniruled.

Example 1.1. Let $\pi: X=\mathbb{P}(\mathcal{E}) \rightarrow C$ be a ruled surface, where C is an elliptic curve, and $\mathcal{E}=\mathcal{O}_{C} \oplus \mathcal{L}$ is such that \mathcal{L} is a line bundle on C and $\operatorname{deg}(\mathcal{L})<0$. Let $e=-\operatorname{deg}\left(\bigwedge^{2} \mathcal{E}\right)$. Then $e>0$ and $K_{X} \equiv_{\text {num }}-2 C_{0}-e F$, where C_{0} is the unique section of π with $\mathcal{O}_{X}\left(C_{0}\right) \cong \mathcal{O}_{X}(1)$ (see [Har77, Chapter V, Example 2.11.3]), and F is a fiber. So we have

$$
-\left(K_{X}+C_{0}\right) \equiv_{\mathrm{num}} C_{0}+e F=\varepsilon C_{0}+(1-\varepsilon)\left(C_{0}+\frac{e}{1-\varepsilon} F\right),
$$

[^0]
[^0]: Received May 2, 2016. Revision received June 13, 2017.
 The author was supported in part by the FRG grant DMS-\# 1265261.

