Infinite Groups Acting Faithfully on the Outer Automorphism Group of a Right-Angled Artin Group

Corey Bregman & Neil J. Fullarton

ABSTRACT. We construct the first known examples of infinite subgroups of the outer automorphism group of $Out(A_{\Gamma})$, for certain rightangled Artin groups A_{Γ} . This is achieved by introducing a new class of graphs, called *focused graphs*, whose properties allow us to exhibit (infinite) projective linear groups as subgroups of $Out(Out(A_{\Gamma}))$. This demonstrates a marked departure from the known behavior of $Out(Out(A_{\Gamma}))$ when A_{Γ} is free or free abelian since in these cases $Out(Out(A_{\Gamma}))$ has order at most 4. We also disprove a previous conjecture of the second author, producing new examples of finite-order members of certain $Out(Aut(A_{\Gamma}))$.

1. Introduction

Right-angled Artin groups, or *RAAGs*, comprise a class of groups that generalize free groups and free Abelian groups. Every finite simplicial graph Γ with vertex set V defines a RAAG A_{Γ} in the following way. The generating set of A_{Γ} is in bijection with the vertices of Γ , and the only relations are that two generators commute if their corresponding vertices share an edge in Γ . Thus, if Γ has no edges, then A_{Γ} is just the free group F_V , whereas if Γ is a complete graph, then A_{Γ} is the free Abelian group $\mathbb{Z}\langle V \rangle$.

In this paper, we consider the automorphism and outer automorphism groups of general RAAGs in comparison with those of free groups and free Abelian groups. More specifically, we investigate $Out(Out(A_{\Gamma}))$ and $Out(Aut(A_{\Gamma}))$. These groups provide a measure of the algebraic rigidity of $Out(A_{\Gamma})$ and $Aut(A_{\Gamma})$, respectively, and their study fits into a more general program of investigating rigidity of groups throughout geometric group theory.

The main goal of this paper is to show that there exist infinitely many graphs Γ for which $Out(Out(A_{\Gamma}))$ is infinite. We achieve this by introducing a new class of graphs, which we call *focused graphs*. A graph Γ is said to be *focused* if it has a distinguished vertex *c* with the following two properties: (i) *c* is the unique vertex of Γ that may dominate a vertex other than itself, and (ii) *c* is the only vertex whose star disconnects Γ . Focused graphs are the key construction that allows us to prove our following main theorem.

THEOREM A. For each $n \ge 2$, there exist infinitely many focused graphs Γ such that $Out(Out(A_{\Gamma}))$ contains $PGL_n(\mathbb{Z})$.

Received March 21, 2016. Revision received April 20, 2016.