Weak Amenability of the Central Beurling Algebras on [FC]⁻ Groups

VARVARA SHEPELSKA & YONG ZHANG

ABSTRACT. We study weak amenability of central Beurling algebras $ZL^1(G, \omega)$. The investigation is a natural extension of the known work on the commutative Beurling algebra $L^1(G, \omega)$. For $[FC]^-$ groups, we establish a necessary condition, and for $[FD]^-$ groups, we give sufficient conditions for the weak amenability of $ZL^1(G, \omega)$. For a compactly generated $[FC]^-$ group with polynomial weight $\omega_{\alpha}(x) = (1 + |x|)^{\alpha}$, we prove that $ZL^1(G, \omega_{\alpha})$ is weakly amenable if and only if $\alpha < 1/2$.

1. Introduction

Let *G* be a locally compact group. As it is customary, two functions equal to each other almost everywhere on *G* with respect to the Haar measure will be regarded as the same. We denote the integral of a function *f* on a (Borel-)measurable subset *K* of *G* against a fixed left Haar measure by $\int_K f \, dx$. The space of all complex-valued Haar-integrable functions on *G* is denoted by $L^1(G)$. A weight on *G* is a Borel-measurable function $\omega : G \to \mathbb{R}^+$ satisfying

$$\omega(xy) \le \omega(x)\omega(y) \quad (x, y \in G).$$

Given a weight ω on G, we consider the space $L^1(G, \omega)$ of all complex-valued Haar-measurable functions f on G that satisfy

$$||f||_{\omega} = \int |f(x)|\omega(x)\,dx < \infty.$$

With the convolution product * and the norm $\|\cdot\|_{\omega}$, $L^{1}(G, \omega)$ is a Banach algebra, called a Beurling algebra on G. When $\omega = 1$, this is simply the group algebra $L^{1}(G)$. Let $ZL^{1}(G, \omega)$ be the closed subalgebra of $L^{1}(G, \omega)$ consisting of all $f \in L^{1}(G, \omega)$ such that $f^{g} = f$ for all $g \in G$, where $f^{g}(x) = f(g^{-1}xg)$ ($x \in G$). Then $ZL^{1}(G, \omega)$ is a commutative Banach algebra, called a *central Beurling algebra* [19]. Indeed, $ZL^{1}(G, \omega)$ is the center of $L^{1}(G, \omega)$. It is well known that $ZL^{1}(G, \omega)$ is nontrivial if and only if G is an [IN] group [22].

From [8, Rem. 8.8], a measurable weight ω on *G* is always equivalent to a continuous weight $\tilde{\omega}$ on *G*, where the equivalence means that there are constants $c_1, c_2 > 0$ such that $c_1\omega(x) \leq \tilde{\omega}(x) \leq c_2\omega(x)$ for almost all $x \in G$. The equivalence implies that the respective Beurling algebras $L^1(G, \omega)$ and $L^1(G, \tilde{\omega})$ are

Received February 5, 2016. Revision received November 3, 2016.

Yong Zhang is supported by NSERC Grant 238949.