Curve Arrangements, Pencils, and Jacobian Syzygies

Alexandru Dimca

Abstract

Let $\mathcal{C}: f=0$ be a curve arrangement in the complex projective plane. If \mathcal{C} contains a curve subarrangement consisting of at least three members in a pencil, then we obtain an explicit syzygy among the partial derivatives of the homogeneous polynomial f. In many cases, this observation reduces the question about the freeness or the nearly freeness of \mathcal{C} to an easy computation of Tjurina numbers. We also discuss some consequences for Terao's conjecture in the case of line arrangements and the asphericity of some complements of geometrically constructed free curves.

1. Introduction

Let $S=\mathbb{C}[x, y, z]$ be the graded polynomial ring in the variables x, y, z with complex coefficients, and let $\mathcal{C}: f=0$ be a reduced curve of degree d in the complex projective plane \mathbb{P}^{2}. The minimal degree of a Jacobian syzygy for f is the integer $\operatorname{mdr}(f)$ defined to be the smallest integer $r \geq 0$ such that there is a nontrivial relation

$$
\begin{equation*}
a f_{x}+b f_{y}+c f_{z}=0 \tag{1.1}
\end{equation*}
$$

among the partial derivatives f_{x}, f_{y}, and f_{z} of f with coefficients a, b, c in S_{r}, the vector space of homogeneous polynomials of degree r. The knowledge of the invariant $\operatorname{mdr}(f)$ allows us to decide if the curve \mathcal{C} is free or nearly free by a simple computation of the total Tjurina number $\tau(\mathcal{C})$; see [9;5], and Theorems 1.12 and 1.14 for nice geometric applications. Recall that a curve \mathcal{C} as before is free (resp. nearly free) if and only if $\tau(\mathcal{C})=(d-1)^{2}-r(d-r-1)$ (resp. $\left.\tau(\mathcal{C})=(d-1)^{2}-r(d-r-1)-1\right)$, where $r=\operatorname{mdr}(f)$. These conditions tell that the minimal resolution of the graded S-module of Jacobian syzygies $A R(f) \subset S^{3}$ consisting of all relations of type (1.1) satisfies certain properties; see [5] for details.

When \mathcal{C} is a free (resp. nearly free) curve in the complex projective plane \mathbb{P}^{2} such that \mathcal{C} is not a union of lines passing through one point, then the exponents of \mathcal{A} denoted by $d_{1} \leq d_{2}$ satisfy $d_{1}=\operatorname{mdr}(f) \geq 1$, and we have

$$
\begin{equation*}
d_{1}+d_{2}=d-1 \tag{1.2}
\end{equation*}
$$

(resp. $d_{1}+d_{2}=d$). Moreover, all the pairs d_{1}, d_{2} satisfying these conditions may occur as exponents; see [8]. For more on free hypersurfaces and free hyperplane arrangements, see $[18 ; 15 ; 24 ; 19]$. A useful result is the following.

[^0]
[^0]: Received January 12, 2016. Revision received July 13, 2016. Partially supported by Institut Universitaire de France.

