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Rational Singularities, ω-Multiplier Ideals,
and Cores of Ideals

Kohsuke Shibata

Abstract. We define the ω-multiplier ideals on a normal variety. The
main goal of this paper is to introduce an ω-multiplier ideal and prove
its properties. We give characterizations of two-dimensional rational
singularities by means of ω-multiplier ideals and cores of ideals.

1. Introduction

In this paper, we always assume that a ring is a domain essentially of finite type
over C and a variety is an irreducible reduced separated scheme of finite type
over C.

Rees and Sally [27] introduced the cores of ideals. Okuma, Watanabe, and
Yoshida [26] characterized a two-dimensional local ring with rational singularity
via cores of ideals. However, in the higher-dimensional case, we have a counterex-
ample to such a characterization. We give another characterization of a local ring
with rational singularity of arbitrary dimension via cores of ideals. We, namely,
will prove the following:

Theorem 1.1. Let (A,m) be an n-dimensional Cohen–Macaulay local ring with
an isolated singularity. Then A is a rational singularity if and only if In ⊂ core(I )

for any m-primary ideal I .

By this theorem, we show that a Cohen–Macaulay local ring with an isolated
singularity has a rational singularity if the Briançon–Skoda theorem holds for the
ring. Lipman and Teissier [23] showed that the Briançon–Skoda theorem holds
for a local ring with rational singularities. Therefore a Cohen–Macaulay local ring
with an isolated singularity has a rational singularity if and only if the Briançon–
Skoda theorem holds for the ring.

The multiplier ideals are fundamental tools in birational geometry. In this pa-
per, we introduce a new notion of an “ω-multiplier ideal”, which has similar prop-
erties and works in a slightly different way than a multiplier ideal. The main goal
of this paper is to prove the properties of ω-multiplier ideals and show some ap-
plications.

For the definition of the multiplier ideals, we use the discrepancies. In order for
the discrepancy to be well defined, we need to assume that the variety is normal
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