# ( $p-1$ )th Roots of Unity $\bmod p^{n}$, Generalized Heilbronn Sums, Lind-Lehmer Constants, and Fermat Quotients 

Todd Cochrane, Dilum De Silva, \& Christopher Pinner


#### Abstract

For $n \geq 3$, we obtain an improved estimate for the generalized Heilbronn sum $\sum_{x=1}^{p-1} e_{p^{n}}\left(y x x^{p^{n-1}}\right)$ and use it to show that any interval $\mathcal{I}$ of points in $\mathbb{Z}_{p^{n}}$ of length $|\mathcal{I}| \gg p^{1.825}$ for $n=2$, $|\mathcal{I}| \gg p^{2.959}$ for $n=3$, and $|\mathcal{I}| \geq p^{n-3.269(34 / 151)^{n}+o(1)}$ for $n \geq 4$ contains a $(p-1)$ th root of unity. As a consequence, we derive an improved estimate for the Lind-Lehmer constant for the Abelian group $\mathbb{Z}_{p}^{n}$ and improved estimates for Fermat quotients.


## 1. Introduction

Let $p$ be a prime, $n \in \mathbb{N}, \mathbb{Z}_{p^{n}}^{*}$ be the group of units $\bmod p^{n}$, and $G_{n} \subset \mathbb{Z}_{p^{n}}^{*}$ be the subgroup of $(p-1)$ th roots of unity,

$$
G_{n}:=\left\{x \in \mathbb{Z}_{p^{n}}^{*}: x^{p-1}=1\right\}=\left\{x^{p^{n-1}} \quad\left(\bmod p^{n}\right): 1 \leq x \leq p-1\right\}
$$

For $y \in \mathbb{Z}$, let $S_{n}(y)$ denote the generalized Heilbronn sum

$$
S_{n}(y):=\sum_{x \in G_{n}} e_{p^{n}}(y x)=\sum_{x=1}^{p-1} e_{p^{n}}\left(y x^{p^{n-1}}\right)
$$

where $e_{p^{n}}(\cdot)=e^{\frac{2 \pi i}{p^{n}}}$, and let

$$
H_{n}=\max _{p^{n} \nmid y}\left|S_{n}(y)\right| .
$$

Our interest here is in estimating $H_{n}$ and studying the distribution of points in $G_{n}$. In particular, we wish to determine how large $M$ must be so that any interval

$$
\begin{equation*}
\mathcal{I}:=\{a+1, \ldots, a+M\} \subset \mathbb{Z}_{p^{n}} \tag{1.1}
\end{equation*}
$$

of length $M$ is guaranteed to contain an element of $G_{n}$. Equivalently, we wish to determine an upper bound on the maximal gap between consecutive $(p-1)$ th roots of unity. It is well known that an estimate for $H_{n}$ leads to a corresponding estimate on the size of the gap. We make this explicit in Corollary 3.1, where we prove that any interval of length $|\mathcal{I}| \geq 3 p^{n-1} H_{n}$ contains an element of $G_{n}$.

The current best estimate for $H_{2}$ is due to Shkredov [17, Thm. 15],

$$
\begin{equation*}
H_{2} \ll p^{\frac{5}{6}} \log ^{\frac{1}{6}} p \tag{1.2}
\end{equation*}
$$

[^0]
[^0]:    Received November 12, 2015. Revision received November 29, 2016.

