Jet Schemes and Generating Sequences of Divisorial Valuations in Dimension Two

Hussein Mourtada

Abstract

Using the theory of jet schemes, we give a new approach to the description of a minimal generating sequence of a divisorial valuations on \mathbf{A}^{2}. For this purpose, we show how to recover the approximate roots of an analytically irreducible plane curve from the equations of its jet schemes. As an application, for a given divisorial valuation v centered at the origin of \mathbf{A}^{2}, we construct an algebraic embedding $\mathbf{A}^{2} \hookrightarrow \mathbf{A}^{N}, N \geq 2$, such that v is the trace of a monomial valuation on \mathbf{A}^{N}. We explain how results in this direction give a constructive approach to a conjecture of Teissier on resolution of singularities by one toric morphism.

1. Introduction

Let $X=\mathbf{A}^{d}=\operatorname{Spec} R$, where $R=\mathbf{K}\left[x_{1}, \ldots, x_{d}\right]$ is a polynomial ring over an algebraically closed field \mathbf{K}. The arc space of X, which we denote by X_{∞}, is the scheme whose \mathbf{K}-rational points are

$$
X_{\infty}(\mathbf{K})=\operatorname{Hom}_{\mathbf{K}}(\operatorname{Spec} \mathbf{K}[[t]], X) .
$$

We have a natural truncation morphism $X_{\infty} \longrightarrow X$, which we denote by Ψ_{0}. For $p \in \mathbf{N}$ and the subvariety $Y=V(I) \subset X$ defined by an ideal I, we consider the subset of arcs in X_{∞} that have an order of contact p with Y, that is,

$$
\operatorname{Cont}^{p}(Y)=\left\{\gamma \in X_{\infty} \mid \operatorname{ord}_{t} \gamma^{*}(I)=p\right\}
$$

where $\gamma^{*}: R \longrightarrow \mathbf{K}[[t]]$ is the \mathbf{K}-algebra homomorphism associated with γ, and

$$
\operatorname{ord}_{t} \gamma^{*}(I)=\min _{h \in I}\left\{\operatorname{ord}_{t} \gamma^{*}(h)\right\} .
$$

With an irreducible component \mathbb{W} of $\operatorname{Cont}^{p}(Y)$, which is contained in the fiber $\Psi_{0}^{-1}(0)$ above the origin, we associate a valuation $v_{\mathbb{W}}: R \longrightarrow \mathbf{N}$ as follows:

$$
v_{\mathbb{W}}(h)=\min _{\gamma \in \mathbb{W}}\left\{\operatorname{ord}_{t} \gamma^{*}(h)\right\} \quad \text { for } h \in R .
$$

It follows from [ELM] (see also [dFEI; Re], Prop. 3.7(vii)) that $v_{\mathbb{W}}$ is a divisorial valuation centered at the origin $0 \in X$ and that all divisorial valuations centered at $0 \in X$ can be obtained in this way.

[^0]
[^0]: Received September 15, 2015. Revision received May 19, 2016. This research was partially supported by the ANR-12-JS01-0002-01 SUSI.

