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A Note on Higher-Order Gauss Maps

Sandra Di Rocco, Kelly Jabbusch, & Anders Lundman

Abstract. We study Gauss maps of order k, associated to a projec-
tive variety X embedded in projective space via a line bundle L. We
show that if X is a smooth, complete complex variety and L is a k-jet
spanned line bundle on X, with k ≥ 1, then the Gauss map of order
k has finite fibers, unless X = Pn is embedded by the Veronese em-
bedding of order k. In the case where X is a toric variety, we give a
combinatorial description of the Gauss maps of order k, its image, and
the general fibers.

1. Introduction

Let X ⊂ PN be an n-dimensional irreducible, nondegenerate projective variety
defined over an algebraically closed field k of characteristic 0. The (classical)
Gauss map is the rational morphism γ : X ��� Gr(n,N) that assigns to a smooth
point x the projective tangent space of X at x, γ (x) = TX,x

∼= Pn. It is known that
the general fiber of γ is a linear subspace of PN and that the morphism is finite
and birational if X is smooth unless X is all of PN , [Zak93; KP91; GH79].

In [Zak93], Zak defines a generalization of the above definition as follows. For
n ≤ m ≤ N − 1, let Gr(m,N) be the Grassmanian variety of m-dimensional lin-
ear subspaces in PN , and define Pm = {(x,α) ∈ Xsm × Gr(m,N) | TX,x ⊆ Lα},
where Lα is the linear subspace corresponding to α ∈ Gr(m,N), and the bar de-
notes the Zariski closure in X × Gr(m,N). The mth Gauss map is the projection
γm :Pm → Gr(m,N). When m = n, we recover the classical Gauss map, γn = γ .
These generalized Gauss maps still enjoy the property that a general fiber is a
linear subspace [Zak93, 2.3(c)]. Moreover, a general fiber is always finite if X is
smooth and n ≤ m ≤ N − n + 1, [Zak93, 2.3(b)].

In this paper we consider a different generalization of the Gauss map, where,
instead of higher-dimensional linear spaces tangent at a point, we use linear spaces
tangent to higher order, namely the osculating spaces. The osculating space of
order k of X at a smooth point x ∈ Xsm, Osck

x , is a linear subspace of PN of
dimension dk , where n ≤ dk ≤ (

n+k
n

)
; see Definition 2.4. We can then define a

rational map γ k : X ��� Gr(dk − 1,N) that assigns to a point x the kth osculating
space of X at x, γ k(x) = Osck

x , where dk is the general kth osculating dimension;
see Definition 3.1. Notice that when k = 1, we recover the classical Gauss map,
γ 1 = γn = γ . We call γ k the Gauss map of order k. This definition was originally
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