Cut Limits on Hyperbolic Extensions

Pedro Ontaneda

Abstract

Hyperbolic extensions were defined and studied in [4]. Cut limits of families of metrics were introduced in [5]. In this paper, we show that if a family of metrics $\left\{h_{\lambda}\right\}$ has cut limits, then the family of hyperbolic extensions $\left\{\mathcal{E}_{k}\left(h_{\lambda}\right)\right\}$ also has cut limits.

The results in this paper are used in the problem of smoothing Charney-Davis strict hyperbolizations [2;3].

1. Introduction

This paper deals with the relationship between two concepts: "hyperbolic extensions", which were studied in [4], and "cut limits of families of metrics", which were defined in [5]. Before stating our main result, we first introduce these concepts here.

1.1. Hyperbolic Extensions

Recall that the hyperbolic n-space \mathbb{H}^{n} is isometric to $\mathbb{H}^{k} \times \mathbb{H}^{n-k}$ with warp product metric $\left(\cosh ^{2} r\right) \sigma_{\mathbb{H}^{k}}+\sigma_{\mathbb{H}^{n-k}}$, where $\sigma_{\mathbb{H}^{l}}$ denotes the hyperbolic metric of \mathbb{H}^{l}, and $r: \mathbb{H}^{n-k} \rightarrow[0, \infty)$ is the distance to a fixed point in \mathbb{H}^{n-k}. For instance, in the case $n=2$, since $\mathbb{H}^{1}=\mathbb{R}^{1}$, we have that \mathbb{H}^{2} is isometric to $\mathbb{R}^{2}=\{(u, v)\}$ with metric $\cosh ^{2} v d u^{2}+d v^{2}$. The concept of "hyperbolic extension" is a generalization of this construction; we explain this in the next paragraph.

Let $\left(M^{n}, h\right)$ be a complete Riemannian manifold with center $o=o_{M} \in M$, that is, the exponential map $\exp _{o}: T_{o} M \rightarrow M$ is a diffeomorphism. The warp product metric

$$
f=\left(\cosh ^{2} r\right) \sigma_{\mathbb{H}^{k}}+h
$$

on $\mathbb{H}^{k} \times M$ is the hyperbolic extension (of dimension k) of the metric h. Here r is the distance-to- o function on M. We write $\mathcal{E}_{k}(M)=\left(\mathbb{H}^{k} \times M, f\right)$ and $f=$ $\mathcal{E}_{k}(h)$. We also say that $\mathcal{E}_{k}(M)$ is the hyperbolic extension (of dimension k) of (M, h) (or just of $M)$. Hence, for instance, we have $\mathcal{E}_{k}\left(\mathbb{H}^{l}\right)=\mathbb{H}^{k+l}$. Also, write $\mathbb{H}^{k}=\mathbb{H}^{k} \times\left\{o_{M}\right\} \subset \mathcal{E}_{k}(M)$, and we have that any $p \in \mathbb{H}^{k}$ is a center of $\mathcal{E}_{k}(M)$ (see Remarks 2.3 (3)).

Remarks 1.1.

1. Let M^{n} have center o. Using a fixed orthonormal basis on $T_{o} M$ and the exponential map, we can identify M with \mathbb{R}^{n}, and $M-\{o\}$ with $\mathbb{R}^{n}-\{0\}=$
[^0]
[^0]: Received June 23, 2014. Revision received June 23, 2016.
 The author was partially supported by an NSF grant.

