Deforming an ε-Close to Hyperbolic Metric to a Warped Product

Pedro Ontaneda

Abstract

We show how to deform a metric of the form $g=g_{r}+$ $d r^{2}$ to a warped product $\mathcal{W} g=\sinh ^{2}(r) g^{\prime}+d r^{2}\left(g^{\prime}\right.$ does not depend on r) for r less than some fixed r_{0}. Our main result establishes to what extent the warp forced metric $\mathcal{W} g$ is close to being hyperbolic if we assume g to be close to hyperbolic.

Introduction

We first introduce some notation. The canonical flat metric on \mathbb{R}^{k} and the round metric on \mathbb{S}^{k} will be denoted by $\sigma_{\mathbb{R}^{k}}$ and $\sigma_{\mathbb{S}^{k}}$, respectively. Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold with center $o \in M$, that is, the exponential map $\exp _{o}: T_{o} M \rightarrow M$ is a diffeomorphism. Using the exponential map $\exp _{o}$, we shall sometimes identify M with \mathbb{R}^{n}, and thus we can write the metric g on $M-\{o\}=\mathbb{S}^{n-1} \times \mathbb{R}^{+}$as $g=g_{r}+d r^{2}$, where r is the distance to o. The open ball of radius r in M, centered at o, will be denoted by $B_{r}=B_{r}(M)$, and the closed ball by \bar{B}_{r}. We fix a function $\rho: \mathbb{R} \rightarrow[0,1]$ with $\rho(t)=0$ for $t \leq 0, \rho(t)=1$ for $t \geq 1$, and ρ constant near 0 and 1 .

Let M have center o and metric $g=g_{r}+d r^{2}$. Fix $r_{0}>0$. We define the metric $\bar{g}_{r_{0}}$ on $M-\{o\}$ by

$$
\bar{g}_{r_{0}}=\sinh ^{2}(r)\left(\frac{1}{\sinh ^{2}\left(r_{0}\right)}\right) g_{r_{0}}+d r^{2}
$$

Note that this metric is a warped product (warped by sinh). Note also that to define $\bar{g}_{r_{0}}$ we are using the identification $M-\{o\}=\mathbb{S}^{n-1} \times \mathbb{R}^{+}$given by the original metric g. We now force the metric g to be equal to $\bar{g}_{r_{0}}$ on $\bar{B}_{r_{0}}=\bar{B}_{r_{0}}(M)$ and stay equal to g outside $B_{r_{0}+1 / 2}$. For this, we define the warp forced (on $B_{r_{0}}$) metric as

$$
\mathcal{W}_{r_{0}} g=\rho_{r_{0}} \bar{g}_{r_{0}}+\left(1-\rho_{r_{0}}\right) g,
$$

where $\rho_{r_{0}}(t)=\rho\left(2 t-2 r_{0}\right)$. Hence, we have

$$
\mathcal{W}_{r_{0}} g= \begin{cases}\bar{g}_{r_{0}} & \text { on } \bar{B}_{r_{0}} \tag{0.1}\\ g & \text { outside } B_{r_{0}+\frac{1}{2}}\end{cases}
$$

We call the process $g \mapsto \mathcal{W}_{r_{0}} g$ warp forcing. Note that if we choose g to be the warped-by-sinh hyperbolic metric $g=\sinh ^{2}(t) \sigma_{\mathbb{S}^{n-1}}+d t^{2}$, then $\mathcal{W}_{r_{0}} g=g$. This suggests that if g is in some sense close to being hyperbolic, then $\mathcal{W}_{r_{0}} g$

[^0]
[^0]: Received June 23, 2014. Revision received June 23, 2016.
 The author was partially supported by an NSF grant.

