Deforming an ε -Close to Hyperbolic Metric to a Warped Product

Pedro Ontaneda

ABSTRACT. We show how to deform a metric of the form $g = g_r + dr^2$ to a warped product $Wg = \sinh^2(r)g' + dr^2$ (g' does not depend on r) for r less than some fixed r_0 . Our main result establishes to what extent the warp forced metric Wg is close to being hyperbolic if we assume g to be close to hyperbolic.

Introduction

We first introduce some notation. The canonical flat metric on \mathbb{R}^k and the round metric on \mathbb{S}^k will be denoted by $\sigma_{\mathbb{R}^k}$ and $\sigma_{\mathbb{S}^k}$, respectively. Let (M^n, g) be a complete Riemannian manifold *with center* $o \in M$, that is, the exponential map $\exp_o : T_o M \to M$ is a diffeomorphism. Using the exponential map \exp_o , we shall sometimes identify M with \mathbb{R}^n , and thus we can write the metric g on $M - \{o\} = \mathbb{S}^{n-1} \times \mathbb{R}^+$ as $g = g_r + dr^2$, where r is the distance to o. The open ball of radius r in M, centered at o, will be denoted by $B_r = B_r(M)$, and the closed ball by \overline{B}_r . We fix a function $\rho : \mathbb{R} \to [0, 1]$ with $\rho(t) = 0$ for $t \le 0$, $\rho(t) = 1$ for $t \ge 1$, and ρ constant near 0 and 1.

Let *M* have center *o* and metric $g = g_r + dr^2$. Fix $r_0 > 0$. We define the metric \bar{g}_{r_0} on $M - \{o\}$ by

$$\bar{g}_{r_0} = \sinh^2(r) \left(\frac{1}{\sinh^2(r_0)}\right) g_{r_0} + dr^2.$$

Note that this metric is a warped product (warped by sinh). Note also that to define \bar{g}_{r_0} we are using the identification $M - \{o\} = \mathbb{S}^{n-1} \times \mathbb{R}^+$ given by the original metric g. We now force the metric g to be equal to \bar{g}_{r_0} on $\bar{B}_{r_0} = \bar{B}_{r_0}(M)$ and stay equal to g outside $B_{r_0+1/2}$. For this, we define the *warp forced (on B_{r_0}) metric* as

$$\mathcal{W}_{r_0}g = \rho_{r_0}\bar{g}_{r_0} + (1 - \rho_{r_0})g,$$

where $\rho_{r_0}(t) = \rho(2t - 2r_0)$. Hence, we have

$$\mathcal{W}_{r_0}g = \begin{cases} \bar{g}_{r_0} & \text{on } \bar{B}_{r_0}, \\ g & \text{outside } B_{r_0 + \frac{1}{2}}. \end{cases}$$
(0.1)

We call the process $g \mapsto W_{r_0}g$ warp forcing. Note that if we choose g to be the warped-by-sinh hyperbolic metric $g = \sinh^2(t)\sigma_{\mathbb{S}^{n-1}} + dt^2$, then $W_{r_0}g = g$. This suggests that if g is in some sense close to being hyperbolic, then $W_{r_0}g$

Received June 23, 2014. Revision received June 23, 2016.

The author was partially supported by an NSF grant.