A Remark on the Ueno-Campana's Threefold

Cinzia Bisi, Paolo Cascini, \& Luca Tasin

Dedicated to Fabrizio Catanese on his 65th birthday

Abstract

We show that the Ueno-Campana's threefold cannot be obtained as the blow-up of any smooth threefold along a smooth center, answering negatively a question raised by Oguiso and Truong.

1. Introduction

Let $E_{\tau}=\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ be the complex elliptic curve of period τ. There exist exactly two elliptic curves with automorphism group bigger than $\{ \pm 1\}$: these are defined respectively by the periods $\sqrt{-1}$ and the cubic root of unity $\omega:=(-1+$ $\sqrt{-3}) / 2$.

We consider the diagonal action of the cyclic group generated by $\sqrt{-1}$ (resp. $-\omega$) on the product

$$
E_{\sqrt{-1}} \times E_{\sqrt{-1}} \times E_{\sqrt{-1}} \quad\left(\text { resp. } E_{\omega} \times E_{\omega} \times E_{\omega}\right)
$$

and we denote by X_{4} (resp. X_{6}) the minimal resolution of their quotients

$$
E_{\sqrt{-1}} \times E_{\sqrt{-1}} \times E_{\sqrt{-1}} /\langle\sqrt{-1}\rangle \quad\left(\text { resp. } E_{\omega} \times E_{\omega} \times E_{\omega} /\langle-\omega\rangle\right)
$$

The minimal resolutions are obtained by a single blow-up at the maximal ideal of each singular point of the quotients.

The threefolds X_{4} and X_{6} have been extensively studied in the past. In particular, they admit an automorphism of positive entropy (e.g., see [Ogu15] for more details). The variety X_{4} is now referred as the Ueno-Campana's threefold. It has been recently shown that X_{4} and X_{6} are rational. Indeed, Oguiso, and Truong [OT15] showed the rationality of X_{6}, and Colliot-Théléne [Col15] showed the rationality of X_{4}, after the work of Catanese, Oguiso, and Truong [COT14]. The unirationality of X_{4} was conjectured by Ueno [Uen75], whilst Campana asked about the rationality of X_{4} in [Cam11].

The aim of this note is to give a negative answer to the following question raised by Oguiso and Truong (see [Ogu15, Question 5.11] and [Tru15, Question 2]).

Question 1.1. Can X_{4} or X_{6} be obtained as the blow-up of $\mathbb{P}^{3}, \mathbb{P}^{2} \times \mathbb{P}^{1}$, or $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ along smooth centers?

[^0]
[^0]: Received April 7, 2015. Revision received December 16, 2015.
 The first author was partially supported by Prin 2010-2011 Protocollo: 2010NNBZ78-012, by Firb 2012 Codice: RBFR12W1AQ-001 and by GNSAGA-INdAM. The second author was funded by EPSRC. The third author was partially funded by the Italian grant GNSAGA-INdAM.

