Moriwaki Divisors and the Augmented Base Loci of Divisors on the Moduli Space of Curves

Salvatore Cacciola, Angelo
Felice Lopez, \& Filippo Viviani

Abstract

We study the cone of Moriwaki divisors on \bar{M}_{g} by means of augmented base loci. Using a result of Moriwaki, we prove that an \mathbb{R}-divisor D satisfies the strict Moriwaki inequalities if and only if $\mathbf{B}_{+}(D) \subseteq \partial \bar{M}_{g}$. Then we draw some interesting consequences on the Zariski decomposition of divisors on \bar{M}_{g}, on the minimal model program of \bar{M}_{g}, and on the log canonical models $\bar{M}_{g}(\alpha)$.

1. Introduction

Let $g \geq 3$, and let \bar{M}_{g} be the moduli space of stable curves of genus g. A striking result of Gibney, Keel and Morrison [GKM, Thm. 0.9] asserts that any nef divisor on \bar{M}_{g}, not linearly equivalent to zero, must be big. In terms of cones of divisors in the Néron-Severi space $N^{1}\left(\bar{M}_{g}\right)_{\mathbb{R}}$, this implies that the nef cone does not meet the boundary of the big cone along rational nonzero classes. As a matter of fact, as we shall see, the same is true for real classes: $\operatorname{Nef}\left(\bar{M}_{g}\right)-\{0\} \subset \operatorname{Big}\left(\bar{M}_{g}\right)$. One way to see this is to consider the Moriwaki cone $\operatorname{Mor}\left(\bar{M}_{g}\right)$, that is, the cone of \mathbb{R}-divisors D on \bar{M}_{g} that are nef away from the boundary. The cone $\operatorname{Mor}\left(\bar{M}_{g}\right)$ was explicitly described by Moriwaki [M, Cor. 4.3] in terms of the generators $\lambda, \delta_{0}, \ldots, \delta_{\lfloor g / 2\rfloor}$: an \mathbb{R}-divisor $D \sim a \lambda-b_{0} \delta_{0}-\cdots-b_{\lfloor g / 2\rfloor} \delta_{\lfloor g / 2\rfloor}$ belongs to $\operatorname{Mor}\left(\bar{M}_{g}\right)$ if and only if it is an M-divisor, that is, it satisfies the Moriwaki inequalities

$$
\begin{equation*}
a \geq 0, \quad a \geq \frac{8 g+4}{g} b_{0}, \quad a \geq \frac{2 g+1}{i(g-i)} b_{i} \quad \text { for all } i=1, \ldots,\lfloor g / 2\rfloor \tag{1}
\end{equation*}
$$

The starting idea of this paper is that both the Moriwaki cone and its interior, that is, the cone of those \mathbb{R}-divisors that satisfy the strict Moriwaki inequalities and that we call strict M-divisors, can be interpreted in terms of restricted and augmented base loci.

[^0]
[^0]: Received February 20, 2015. Revision received May 9, 2016.
 All three authors were partially supported by the MIUR national project "Geometria delle varietà algebriche" PRIN 2010-2011. FV was also supported by the MIUR national project "Spazi di moduli e applicazioni" FIRB 2012, by the Research Network Program GDRE-GRIFGA, and by CMUC-Centro de Matemática da Universidade de Coimbra.

